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Abstract 

 

A new, computationally-efficient algorithm has been implemented to solve for thermal 

stresses, strains, and displacements in realistic solidification processes which involve 

highly nonlinear constitutive relations.  A general form of the transient heat equation 

including latent-heat from phase transformations such as solidification and other 

temperature-dependent properties is solved numerically for the temperature field history.  

The resulting thermal stresses are solved by integrating the highly nonlinear thermo-

elastic-viscoplastic constitutive equations using a two-level method. First, an estimate of 

the stress and inelastic strain is obtained at each local integration point by implicit 

integration followed by a bounded Newton-Raphson iteration of the constitutive law.  

Then, the global finite element equations describing the boundary value problem are 

solved using full Newton-Raphson iteration.  The procedure has been implemented into 

the commercial package Abaqus [1] using a user-defined subroutine (UMAT) to integrate 

the constitutive equations at the local level.  Two special treatments for treating the 

liquid/mushy zone with a fixed grid approach are presented and compared.  Other local 

integration methods as well as the explicit initial strain method used in CON2D for 

solving this problem are also briefly reviewed and compared. 

 The model is validated both with a semi-analytical solution from Weiner and Boley [2] 

as well as with an in-house finite element code CON2D [3,4,7,8] specialized in thermo-

mechanical modeling of continuous casting. Both finite element codes are then applied to 

simulate temperature and stress development of a slice through the solidifying steel shell 
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in a continuous casting mold under realistic operating conditions including a stress state 

of generalized plane strain and with actual temperature dependant properties. Mechanical 

results are then used to predict an ideal taper for different casting speeds. 

The model is then improved to add coupling of heat flow and stress generation that are 

increment-wise coupled through the size of the interfacial gap. Coupled results are first 

verified with a solidifying slice, and then quantitatively against the CON2D 2D model of 

billet casting by fully employing Abaqus thermal and mechanical contact capabilities.  

Another coupled 2D model of bloom beam blank casting with contact, known for a very 

challenging geometry, is solved for the simultaneous evolution of deformation, 

temperature, and stress. New knowledge was gained about the complex coupled thermo-

mechanical phenomena that take place in this process, especially in the flange region 

prone to surface and subsurface cracking. Finally, a large scale 3D simulation of a thin 

slab caster with a funnel is performed to predict for the first time, the fully-3D 

mechanical state in the solidifying shell of this complex casting process that involves 

complex geometry and loading conditions. It has provided new valuable insights into a 

complex mechanical state of transverse and axial stress of the solidifying shell retracted 

by the funnel geometry. 
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Chapter 1. Introduction 
 
 
Many manufacturing and fabrication processes such as foundry shape casting, continuous casting 

and welding have common solidification phenomena. Probably one of the most important and 

complex among them is continuous casting. In fact most of the steel made today is produced 

through continuous casting whose schematic is depicted in Fig. 1.1 [8,9]. Even though the 

quality of the continuous casting is constantly improving, there is still a significant amount of 

work needed to minimize the amount of surface defects and to maximize the productivity. Some 

of the more important issues that are influenced by the casting speed, which in turn influences 

the productivity and the quality of steel produced by the continuous casting process, are: 

• Large axial strains due to oscillations and excessive withdrawal forces can cause 

transverse cracks and even breakouts 

• Large transverse strains due to ferrostatic pressure from the liquid phase applied to a 

newly solidified shell can cause longitudinal cracks and breakouts. 

• Uneven shell growth influences the size of interfacial gap and the gap heat flow, leading 

to locally hot and thin parts of shell which can be another cause of longitudinal cracks 

and breakouts. 

• Excessive bulging of the strand bellow the mold between the supporting rolls can cause 

internal cracks too. 

• Sloshing of liquid steel in the meniscus due to higher casting speeds can cause later 

surface quality problems. 
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Most of these phenomena occur during the early stage of solidification and accurate 

determination of the distribution of temperature deformation and stress during the early stages of 

solidification is important for correct prediction of surface shape and cracking problems in 

processes such as the continuous casting of steel. 

 The high cost of plant experiments under the harsh operating steel plant conditions makes it 

appropriate to use all available methods in simulating, optimizing, and designing this process. 

Even though physical modeling (experiment) of initial solidification has been conducted 

[10,11,12], the complexity of this process and phenomena that governs it make it difficult to 

model.  

At the same time the increasing power of computers and development of numerical methods in 

last 20 years has helped researchers to better understand the governing principles of various 

material processing operations. The continuous casting process is not exception, and it has been 

subjected to more numerical models than any other process [13]. However, it is a challenging 

task too, and there is large number of computational difficulties encountered with numerical 

modeling of thermo-mechanical behavior of the shell in continuous casting. Challenges arise due 

to the moving solid-liquid interface, complex thermal and mechanical loading, rate-dependent 

constitutive visco-plastic relationships, temperature dependant material properties, thermal and 

mechanical  contact between the shell and the mold, coupling between the thermal and stress 

analysis through the changing thickness of the air gap, interaction between metallurgical phase 

transformations, inelastic strain and thermal stress, relative motion between the casting and the 

mold, the inherent three dimensional nature of the process, macro segregation and micro 

segregation and more, just to name some of them. Efficiently including as many as possible of 
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these phenomena in a single numerical model is still a major topic of many ongoing research 

projects. 

 

1.1 Steel Continuous Casting-Process Overview 

 

The continuous casting process is a relatively new method in material processing and its 

widespread use did not start until the mid 1960s after some major technical difficulties were 

resolved. [14]. It accounts for 90% of all steel produced in the world today, including almost all 

varieties of steel grades. The continuous casting process is given schematically in Fig. 1.2 [8]. 

Superheated liquid steel flows from a ladle, through a tundish and then it is poured into the open 

ended water cooled copper mold through a nozzle, which is submerged into the liquid steel pool. 

The tundish is designed to hold enough liquid metal to provide continuous flow when ladles are 

periodically exchanged. When molten metal impacts a chilled mold surface it suddenly freezes 

against it to form a solid shell. Heat extracted from the liquid steel flows through the partly 

solidified steel shell, the interfacial gap between the shell surface and the mold, the copper mold 

wall, and finally is transferred to the cooling water flowing through the outer mold walls. Oil or 

powder slag is added to the meniscus flowing into the interfacial gap to eliminate extensive 

friction that accounts for the majority of early solidification shell surface defects, and to protect 

the steel from the air. The mold oscillates vertically to prevent the shell from sticking to the mold 

wall allowing a tearing-free withdrawn from the mold. The mold is also tapered to account for 

the shrinkage of the steel shell by minimizing the occurrence of the gaps which reduce the heat 

transfer rate and leads to the local hot and thinner spots on the shell.  A newly formed shell keeps 

getting thicker as it moves down the mold withstanding the ferrostatic pressure from the liquid 
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pool which increases linearly with the submerged height. Very small strains can initiate hot tear 

cracks at the grain boundaries if liquid from the pool is prevented from feeding through dendrite 

arms to compensate for the shrinkage. The sources of surface and subsurface cracks that develop 

later in the mold are: unsteady cooling of the shell, friction between strand and mold, withdrawal 

forces, microstructure, grain size, and segregation effects.  

The strand passes through a series of water sprays and support rolls located below the mold exit 

where the remaining liquid core solidifies. The shell often bulges in this area of the caster due to 

the ferrostatic pressure pushing outward the still soft shell between the support rolls. Since the 

bulging worsenes strain concentration and promote further propagation of the cracks initiated in 

the mold,  it must be minimized by a sufficient number of support rolls to prevent these failures 

in this final stage of casting. After the liquid core is completely solid, the strand is torch-cut into 

final slabs or billets of desired length. Due to the generation of residual stresses during the 

solidification and cooling, there is usually a shape distortion that represents the difference 

between the section shape of the final slab and the section shape of the mold. 

 

1.2 Objectives 

 

Today’s easy-to-use commercial finite-element packages are now fully capable of handling 3D 

problems, having rich element libraries, fully imbedded pre and post processing capabilities, 

advanced modeling features such as contact algorithms, and can take a full advantage of parallel-

computing capabilities. Unfortunately these commercial packages have given little effort to 

provide integration schemes that are robust enough to handle the highly nonlinear elastic-
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viscoplastic laws arising during casting, so are consequently very slow and prone to convergence 

problems. 

The objective of this work is to implement and validate a robust local viscoplastic integration 

schemes from an in-house code CON2D [3,5,6,8,9], into the commercial finite element package 

Abaqus via its user defined material subroutine UMAT. This work aims to open the door for 

realistic two and three-dimensional computational modeling of complex solidification processes, 

by substantially improving the efficiency of commercial software available to the wider 

academic and industrial research communities.  

The final objective of this work is to demonstrate application of the model, by predicting thermo-

mechanical behavior of the solidifying shell in a wide variety of real world continuous casting 

applications.  These include a solidifying slice in realistic continuous casting conditions, a 2-D 

generalized plane strain model of billet and beam blank castings, and finally a fully 3-D analysis 

of casting in a funnel mold. The results obtained from these and future simulations will be 

available to investigate different practical problems in continuous casting and other solidification 

processes, including new insights into the failure mechanisms that take place in these complex 

processes.  

 

1.3 Methodology  

 

The following approach is taken in this thesis to achieve the outlined objectives: 

In Chapter 2, most of important previous work in numerical modeling of continuous casting is 

reviewed. The literature survey of previous numerical models is roughly divided into 3 
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categories, and all the important aspects in each category are carefully examined. The important 

previous work review for the applications modeled in this work is included in their chapters. 

In Chapter 3, the thermal and mechanical governing equations and their finite-element 

implementations into Abaqus and CON2D are introduced. Chapter 3 also presents the thermo-

viscoplastic constitutive models. The global solution of the boundary value problem is described 

with two different materially non-linear solution strategies using Abaqus and CON2D.  

Chapter 4 provides detailed information on the local integration schemes and their coding. Two 

special treatments for liquid/mushy zone are introduced in this chapter followed by generalized 

plain strain assumptions.  

In Chapter 5, the new model with a special local integration scheme coded into Abaqus UMAT 

subroutine is validated against semi-analytical solution and CON2D. 

In Chapter 6, a real-world simulation of a typical continuous casting process is performed with 

both codes using realistic temperature dependant properties and a simple slice domain.  The 

results are compared and CPU times are benchmarked. The mechanical results are then used to 

predict the ideal mold taper. 

In Chapter 7, UMAT is improved to enable thermo-mechanical coupling. The simple slice 

domain is used one more time for qualitatively validation of coupled results. 

In Chapter 8, a 2D coupled thermo-mechanical analysis with contact of billet casting is 

preformed with our new Abaqus model. The thermo-mechanical results are quantitatively 

compared to the previous CON2D results. 

In Chapter 9, a 2D coupled thermo-mechanical analysis with contact of beam blank caster with 

complex geometry is performed.  
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In Chapter 10, a novel 3D uncoupled thermo-mechanical analysis with contact of a thin slab 

caster with funnel is performed.  

In Chapter 11, conclusions and some recommendations for the future utilization and 

improvement of the tools developed in this work are written.  

 

1.4 Tables and Figures 

 

 

Fig 1.1 3D Scheme of continuous casting process [8] 
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Fig 1.2  Schematic of a longitudinal section through slab caster [7]
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Chapter 2. Previous Work Survey 

With the rapid advance of hardware, the numerical modeling of thermo-mechanical behavior in a 

solidifying body has been benefiting the understanding and improvement of material processes such as 

foundry shape casting, continuous casting, and welding in the last 20 years.  Understanding the history 

of the temperature, shape, and stress helps in the prediction of residual stress, distortion, crack 

formulation and even porosity formation.   A few analytical solutions for stress development in a 

solidifying body have been developed by Weiner and Boley  [2] and   by Tien and Kaump [15]. 

Although these analytical solutions provide valuable benchmark problems for verification of numerical 

models, they are often limited from practical engineering applications by their oversimplified 

assumptions for the complex physical phenomena associated with solidification 

Various numerical methods have been used to solve the equations governing thermo-mechanical 

behavior of a solidifying body. Cross [16] and Hattel et al [17], have used control volume finite-

difference methods to simulate three-dimensional thermo-elastic stresses in die casting. Recently Jung-

Eui Lee and coworkers [18] used a finite volume method for coupled fluid flow, heat transfer, and stress 

of solidifying shells in beam blank mold. Heinlen and Mukherjee [19] presented a boundary-integral-

equation to solve for mechanical behavior for the one-dimensional solidification of an aluminum bar. 

However, a specially suited method to handle a wide variety of nonlinearities and geometric shapes is 

the finite-element method, and almost all numerical research in this area has been using the finite-

element methods and its tools.  

According to the way the following important aspects are handled, the previous work can be divided 

into the following 3 categories: 

 

• Frame of reference 

• Constitutive models for thermo-mechanical behavior and treatment of liquid phase 

• Interaction with mold and the treatment of solidification front  
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2.1 Frame of Reference 

 

Continuous casting is a steady state phenomenon for an outside observer. The support rolls in the lower 

part of a caster are continuously withdrawing the shell from the mold at a rate or a “casting velocity” 

that is ideally equal to the flow of incoming molten metal, thus providing a steady state condition. This 

makes Eulerian approach, which fixes the mesh at spatial points, a natural choice for the frame of 

reference. However, due to inherited history dependence of the thermo-mechanical behavior, the 

advective terms are present in Eulerian governing equations and special updating schemes are necessary 

to handle them. This additional complexity creates further numerical difficulties especially with the 

visco-plastic constitutive laws and limits the effective implementation of Eulerian approach. 

Nevertheless, there are a few models based on Eulerian approach. Barber et al. [20] and L. Yu [21] used 

this approach to model the bulging between the rolls. Kelly et al. [22], Tatsumi et al. [23], and Lee et al. 

[18] used their Eulerian models to simulate behavior of solidifying shell in the mold.  

On the other hand, in a Lagrangian frame of reference computational meshes are moving with the 

material points eliminating the advective terms and history-dependant variable can be easily updated. 

Even though the fine meshes or even re-meshing is often needed with this approach, the vast majority of 

models are based on the Lagrangian frame of reference by tracking the portion of a strand with a variety 

of 1D slice and 2D domains from the meniscus down the caster. These include early models of 

Brimacombe and his coworkers [24-27], Rammerstorfer at al. [28-30], Kristiansen et al. [31-32], 

Kinoshita et al. [33], Wimmer et al. [34]. The more recent models include Thomas and his coworkers 

[35-39], Park et al. [40-42], Tzeng et al. [43], Mizoguchi et al. [44], Boehmer at al. [45-48], Han et al. 

[49], and the most recent by Koric and Thomas [50]. While most of them used in-house codes, some 

have used commercial software [50, 34, 48, 43].  

Arbitrary Lagrangina Eulerian (ALE) method  have been developed as a combination of Eulerian and 

Lagrangian approaches in a attempt to overcome the disadvantages of pure Lagrangian and Eularian 

descriptions by Fachinotti and his coworkers [51, 52]. Even though this hybrid model has computational 
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advantage over Lagrangian description [52], so far its practical application has been limited to simple 

geometries only. 

 

2.2  Constitutive Models and Treatment of Liquid Phase 

 

Choosing a realistic model for constitutive behavior is a key for success in mechanical modeling. Both 

mechanical behavior and thermo-mechanical properties of steels are experiencing a large variation close 

to their melting points. The constitutive model should be able to reproduce these changes in mechanical 

behavior observed from various experiments which measure mechanical response over the range of 

typical continuous casting conditions. Those experiments include uniaxial tests [53-56], creep tests [57], 

and bending tests [58]. Various constitutive models have been used starting with a simple elastic model 

by Manes [59]. Elastic-perfectly-plastic model is used by Weiner and Boley [2] followed by simple 

elastic-plastic models  [24,25,27]. Temperature dependant properties are added to elastic-plastic models 

to get more realistic behavior [46,47,22,23,34]. All of these models are time independent and neglecting 

important time dependant creep features. Later separate creep models are added to account for it 

[31,29,45,48]. Lately, with the rapid advance of computer hardware, more computationally challenging 

elastic-visco-plastic models have been used [42,43,49,18,60] which threat the phenomena of creep and 

plasticity together since only the combined effect is measurable. In these models the inelastic strain rate 

is a function of equivalent stress, equivalent inelastic strain, and temperature. An important extra 

variable, steel carbon content, is added by Kozlowski [61] to the functional dependence of inelastic 

strain rate, and many new models have already adopted it [38,39,51,52,39,50]. Integration of these time 

dependant constitutive laws is a very challenging task due to their inherited numerical stiffness. Having 

efficient and robust integration scheme for constitutive models is essential for successful and time 

manageable performance of any finite element code modeling solidifying shell behavior, especially with 

2D and 3D domains.  Integration schemes performed for every material point (local level) range from 

easy-to-implement but usually slow explicit methods [25,34];  to robust and fast, but hard to implement 

implicitly based algorithms [2,3]. Complexity of implicit methods comes from the fact that the implicit 
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implementation leaves a pair of highly nonlinear equations that need to be solved for every material 

point. It is found in this work that the bounded Newton-Raphson method, originally proposed by Lush et 

al. [62], and then later implemented into CON2D code by Zhu et al [5], have produced best robustness 

and efficiency. 

Two approaches exist for the treatment of the liquid phase that transmits the ferrostatic pressure to the 

solidifying shell while providing continuous stress distribution across the solidifying front. First 

approach is simply avoiding assembling totally liquid elements into the global stiffness matrix 

[22,45,63,64], however it must have a front-track capabilities which are often based on complicated re-

meshing algorithms.  

Second and widely used approach is so called “fixed-grid” method which is based on altering properties 

of liquid with temperature on existing mesh. Providing refined enough mesh to capture the movement of 

solidifying front, this method can be easily implemented into existing fixed-grid FE codes. There are 3 

known variations of altering the properties of liquid the with the fixed-grid method. The simplest one is 

to model liquid phase as an elastic material with heavily reduced elastic modulus in liquid and mushy 

zone [65,43,66,67]. This method sometimes introduces non physical stress on the solid part in liquid-

solid phase transition zone, as well as numerical ill-conditioning in global stiffness FE assembly. 

Another method proposed by Zhu et al [5] avoids abrupt changes of elastic properties, and is based on a 

viscoplastic constitutive relation for liquid/mushy phase in the form of a penalty function that generates 

inelastic strain in proportion of equivalent stress in the liquid. While this method can provide a useful 

insight into mechanical behavior in mushy zone, it also introduces even more challenging viscoplastic 

laws then the solid ones, and requires a highly robust integration scheme that often significantly slows 

the overall performance of majority of nonlinear FE codes based on a full Newton-Raphson global 

solution algorithm.  Third method proposed in this work [50] is avoiding integration of rate dependant 

viscoplastic laws. It rather uses a rate-independent elastic-perfectly plastic constitutive law with small 

enough value for yield stress to effectively eliminate stresses in liquid/mushy zone, but without stress 

oscillations in the solid part of transition zone. While this method is more efficient than the method with 
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viscoplastic liquid law, the focus of some future work will be to examine if it can properly model a 

mechanical behavior in the mushy zone whose results can be used to predict hot-tearing failures. 

 

2.3  Interaction with Mold and the Treatment of Solidification Front  

 

The interaction between mold wall and shell surface consist of mechanical and thermal components. The 

thermal component includes the heat transfer rate dependence on the size of the interfacial gap, while 

mechanical component is a contact state between the shell and the mold. These phenomena are closely 

related and often require coupling between the heat transfer and mechanical models. Even though 

coupled models require up to ten times more cpu times and often generate more convergence problems, 

they are more frequently used lately with the increase of computational speed 

[32,33,3,42,46,48,49,22,18,51,34].  

Often an iterative scheme is necessary to solve this coupled model on each time increment level.  Based 

on a gap size from a previous time increment, heat transfer is calculated, and then from its temperature 

results corresponding strand shrinkage and the mold wall position are determined. This leads to a 

calculated gap size, and the whole procedure iterates until the gap sizes are within the convergence 

criteria.  

Strong nonlinearity is created from the mechanical contact state, since the contact boundary condition is 

not known in advance. It is unknown a priori if gap is closed and contact pressure can be transmitted, or 

if the gap is open preventing contact pressure transmission between the contact surfaces. There are three 

major contact formulations for finite element codes.  

Lagrangian multiplier method [68,69,70] which solves for the value of the contact force needed to keep 

the penetration of the shell (slave) node into mold exactly zero. While this method provides exact 

enforcement of contact constrains, it has a complicated implementation and also introduces larger 

system of equations to be solved. 

Penalty method [71,72] uses a stiff spring to prevent the penetration of the shell (slave) surface into the 

mold. This method is easy to implement and does not change the size of the global stiffness matrix, but 
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it is an approximate enforcement, and it is prone to convergence problems if a wrong value for spring 

constant is chosen.  

Augmented lagrange method [73-75] which is a combination of above two, with the innermost iteration 

loop based on a penalty method. It attempts to utilize advantages of two other methods, but it is probably 

the most complicated to implement.  

While many commercial finite software packages are providing all three contact formulations [1,76], in 

house codes are usually confined to some simplified implementations of the penalty method [4].  

In order to distinguish the properties of solid and liquid/mushy elements in a fixed mesh approach, the 

position of a particular isotherm has to be tracked down. This front is called solidification front, and can 

depict how much of the finite element domain is solidified at particular time of the simulation. Both 

thermal and mechanical boundary conditions exist on a solidification front. The thermal boundary 

condition comes from the superheat from the liquid pool transferred to the solidification front as the 

liquid flows in the liquid pool. In order to exactly model this phenomenon, the coupled thermo-fluid-

mechanical simulation is needed. This is still computationally too expensive and complicated to be 

performed, though there was an attempt by Kelly et al. [22] who transferred data between CFD and 

CSM commercial FE packages. Lee et al. is reporting recently that his research group has developed an 

in-house code that can do thermal-fluid-mechanical coupling for beam blank casting [18,58]. Most of 

analysis now days are still using enhanced conductivity in liquid to compensate for this effect. 

The mechanical boundary condition at the solidification front comes from the ferrostatic pressure from 

the liquid pool due to gravity. Most of fixed-grid models apply distributed load equivalent to the 

ferrostatic pressure to the surface of completely solidified elements [32,37,42,48,49,22,18,58,34,50]. 

There are certain convergence difficulties with this approach if distributed load is applied to the 

elements in liquid/mushy zone which are soft and prone to uncontrolled deformation under external 

loads. Tszeng et al. [43] proposed a natural generation of the hydrostatic state of stress in liquid/mushy 

zone with pure elastic constitutive model by simultaneously lowering elastic modulus while increasing 

Poisson’s ratio. It is not clear how this approach can match properly a linear increase in ferrostatic 

pressure as strand moves down the mold.  
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Chapter 3. Governing Equations and their Finite Element 
Implementations 

 

3.1 Notation 

 

Both standard tensor and indicial notations are used throughout this work. Here is a list of some 

of important notations and symbols. 

 

 
Tensor Notation   Indicial Notation  
 

Fourth Order Tensors  D      ijklD
Second Order Tensors     , ',σ σ ε ij ij ij, ' ,σ σ ε  

Vectors         bu , ii b,u
Scalars       κµ ,,T κµ ,,T  

Vector Gradient        u∇ i, ju
Scalar Gradient        T∇ i,T
Divergence of Tensor      σ⋅∇ ij, jσ  

Identity Second Or. Tensor     I ijδ  

Identity Fourth Or. Tensor  I     jlikδδ  

Inner Products       :u u∇ ∇ i, j i, ju u
        N:F σ

ij N jkF ( )σ  
:D ε     klijklD ε      

Outer Tensor Product      II ⊗ klijδδ   
 

ijδ is Kronecker’s delta defined by 
 

⎭
⎬
⎫

⎩
⎨
⎧

≠
=

=δ
jiif0
jiif1

ij  

 
Symmetric second order tensors are often written as column vectors “{}”, while symmetric 

fourth order tensors are written as square matrices “[ ]”- following the Voigt Notation [77]. 
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{ } { } { } { }T T

x y x xy xz yz x y z xy xz yz, , , , , , , , , ,σ = σ σ σ σ σ σ ε = ε ε ε ε ε ε     

  
 
 
3.2 Thermal Governing Equations and their Finite Element Implementations 

 

The local form of the transient energy equation is given in equation (1)[78]. 

 

(H(T) k(T) T
t

⎛ ⎞∂
ρ = ⋅⎜ ⎟∂⎝ ⎠

∇ ∇ )            (1) 

 

along with boundary conditions: 

Prescribed temperature on AT   ˆT T( , t)= x

Prescribed surface flux on Aq  ( ) ˆk T q( , t)− =: n x∇        (1a) 

Surface convection on Ah  ( )k T h(T T )∞− = −: n∇  

 

Where is density, k is isotropic temperature dependant conductivity, H is temperature 

dependant enthalpy, which includes the latent heat of solidification.  is a fixed temperature at 

the boundary A

ρ

T̂

T,  q̂ is prescribed heat flux at the boundary Aq, h is film convection coefficient 

prescribed at the boundary Ah where T∞ is  the ambient temperature, and n is the unit normal 

vector of the surface of the domain. 

The commercial finite-element package Abaqus uses the backward-difference algorithm for time 

integration [80]. 
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t
HHH

ttt
tt

∆
−

=
∆+

∆+                        (2) 

 

After applying the standard Galerkin finite-element method to equation (1) [80], the weak form 

is established in equation (3) using the common notation for element shape functions and their 

spatial derivatives [  and [  respectively. ]N ]B

 

                                                                                                                                        (3) 
q h

T T T T
o

V V A
∫ ∫

A

T ˆ[N] HdV [N] k(t) dV [N] qdA [N] h(T T )dA∂
+ = + −

∂ ∫ ∫x

 

Using equation (2) for time discretization of (3), the following nonlinear system is established  

 

 

  (4) 
[ ] ( ) [ ] [ ]

q h

T
T Tt t t T

o
V V A A

N1 T ˆN H H dV k(T) dV N qdA [N] h(T T )dA 0
t

+∆ ∂ ∂
ρ − + − − − =

∆ ∂ ∂∫ ∫ ∫ ∫x x

 

Abaqus solves the nonlinear system, Eq. (4), incrementally, i.e. achieving equilibrium balance at 

every time increment by utilizing the modified Newton-Raphson (NR) iteration scheme given 

in (5) for each iteration i. 

t∆

 

 

 

               (5) 

[ ] [ ] [ ] [ ] [ ] [ ] { } [ ]

[ ] ( ) [ ]
h q

h

t t
TT T Tt t t t

i i
iV V A A

T tTT t t t t t t
i o i

 

A V V

1 dH ˆN N dV B k B dV N h N dA T N qdA
t dT

N1 T[N] h(T T )dA N H H dV k dV
t

+∆
+∆ +∆

+∆ +∆

⎡ ⎤⎛ ⎞ρ + − ∆ = +⎜ ⎟∆ ⎝ ⎠⎣ ⎦

∂ ⎛ ⎞∂
+ − − ρ − − ⎜ ⎟∆ ∂ ∂⎝ ⎠

∫ ∫ ∫ ∫

∫ ∫ ∫ x x

⎢ ⎥
⎢ ⎥

 17



Equation (5) is solved for { }tt
iT ∆+∆  and then used to update the temperature solution, equation (6) until 

convergence is achieved at every point in the domain at time tt ∆+ . 

 

{ } { } { }tt
1i

tt
i

tt
1i TTT ∆+

+
∆+∆+

+ ∆+=             (6) 

 

The term 
tt

dT
dH ∆+

⎟
⎠
⎞

⎜
⎝
⎛  is an effective specific heat which is greatly enlarged over the phase-change 

temperature interval owing to the evolution of latent heat . Here 

are the solidus and liquidus temperatures respectively. The temperature solution 

(history) for each material point is stored in a result file that is used in the subsequent mechanical 

analysis. 

t t
sol liqT T T+∆< < fH

sol liqT and T

CON2D solves Eq. (3) explicitly using the special averaging technique suggested by Lemmon 

[81] to evaluate the effective specific heat, as given in Eq. (7) 

 

22

22

H H+
x ydH =

dT T T+
x y

⎛ ⎞∂ ∂⎛ ⎞
⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
⎛ ⎞∂ ∂⎛ ⎞
⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

           (7) 

 

A three-level time-stepping method proposed by Dupont [82] was adopted for CON2D to 

explicitly solve Eq. (3).  Assuming the current time is t+∆t, the previous two time steps are t, and 

t-∆t, respectively.  The temperature vector { }T  and its time derivative vector {  are given as: T}
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{ t+∆t t-∆t1{T} = 3T + T
4 }            (8) 

t+∆t tT - T{T} =
∆t

⎧
⎨
⎩ ⎭

⎫
⎬             (9) 

 

After some rearranging this leads to an explicit matrix equation to be solved for temperature at 

the current time: 

 

[ ] [ ] { } { } [ ]{ } [ ]{ }t+∆t t-∆t
q

C C3 1K + T = F - K T + T
4 ∆t 4 ∆t
⎡ ⎤
⎢ ⎥
⎣ ⎦

t        (10) 

 

where [K] conductance (tangent) matrix,  [C] capacitance matrix, and {Fq} heat flow load vector 

are defined as: 

 

[ ] [ ] [ ] [ ] [ ] { } [ ]
q

t t
T T t

q
V V

dH ˆC N N dV [K] B k B dV F N qdA
dT

+∆
⎛ ⎞= ρ = =⎜ ⎟
⎝ ⎠∫ ∫

T

A
∫     (10a) 

 

CON2D incrementally solves Eq. (10) for {Tt+∆t}.  It couples the transient heat transfer and stress 

analysis; within each time increment, temperature is solved first and then subsequently used for 

the stress distribution.  This procedure is repeated for every increment. 
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3.3 Mechanical Governing Equations 

 

In Figure 3.1 two configurations are defined, the initial (reference) configuration and the 

deformed configuration. After forces are applied to the body in initial configuration, it deforms 

to the deformed configuration. We identify each particle of the body with its position in the 

initial configuration (Lagrangian coordinates of the particle), and they are being mapped to 

deformed configuration 

x

x  by the function φ  called deformation. 

 

( )x x= φ             (11) 

 

The displacement field is defined as: 

 

x)x()x(u −φ=            (12) 

 

To determine how adjacent points in the initial configuration deform we define the deformation 

gradient F , the derivative of the deformation. 

 

F I= ∇φ = +∇u             (13) 

 

The tensor which measures the length of an elementary vector defined over the deformed 

configuration in terms of its definition in the initial configuration is right Cauchy-Green strain 

tensor. The local force balance (equilibrium) is originally defined with respect to deformed 

configuration via Cauchy (physical) stress

:TF F

( )C xσ . 
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_ _
( ) ( ) 0C x b x∇ ⋅ σ + =             (14) 

 

Equation (14) is of little use since the deformed configuration is unknown prior to the solution of 

the boundary value problem. We can transform (14) [83] to the initial configuration and express 

the local force balance with respect to initial configuration via nominal stress , whose 

transpose is often called the first Piolla-Kirchoff stress. 

Nσ

 

0( ) ( ) 0N x b x∇ ⋅ σ + =             (15) 

 

where ( )b x   and are body force densities with respect to deformed and initial 

configurations respectively. The relation between Cauchy stress and nominal stress is given in 

equation (16) 

0 ( )b x

 

:
det( )

N
C

F
F
σ

σ =             (16) 

 

The thermal strains which dominate thermo-mechanical behavior during solidification are on the 

order of only a few percent, or cracks will form [84]. Several previous solidification models 

[3,5,6,31,52] confirm that the solidified metal part indeed undergoes only small deformation 

during initial solidification in the mold. The displacement spatial gradient x/uu ∂∂=∇  is 

small, so . This leads to the following approximations: : 1 , det( ) 1u u F u∇ ∇ ≈ ≈ + ∇ ⋅

The positions before and after the deformations can be identified ie, 
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xx
_

≈               (17) 

 

The right Cauchy-Green FT : F strain tensor reduces to 

 

T : ≈ + +F F I u u∇ ∇ T( )           (18) 

 

which leads to the definition of the linearized strain tensor [83,77] 

 

])([
2
1 Tuu ∇+∇=ε             (19) 

 

Then, the Cauchy stress tensor  can be identified with the nominal stress tensor  and we 

use σ  to denote stress in small-strain formulation. 

Cσ Νσ

 

_
( ) ( ) ( )≈ =C Nx xσ σ σ x              (20) 

 

and the equilibrium equation (14) can be defined with respect to initial configuration  

 

( ) 0ox b∇ ⋅ σ + =             (21) 

 

The boundary conditions are: 
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uˆ      on  A

 on  AΦ

=

=

u u

nσ : Φ
           (21a) 

 

where prescribed displacements  on boundary surface portion Aû u, and boundary surface 

tractions Φ  on portion define a quasi-static boundary value problem.  The rate representation 

of total strain in this elastic-viscoplastic model is given by: 

AΦ

 

thieel εεεε ++=             (22) 

 

where are the elastic, inelastic (plastic + creep), and thermal strain rate tensors 

respectively.  Stress rate depends on elastic strain rate and in this case of linear isotropic 

material and negligible large rotations it is given by (23) 

thieel ,, εεε

σ

 

ie th:( )= − −Dσ ε ε ε             (23) 

 

D  is the fourth order isotropic elasticity tensor given by (24) 

 

B
22 (k )
3

= µ + − µ ⊗D I I I            (24) 

 

Here are the shear modulus and bulk modulus respectively and are in general functions of 

temperature, while 

B, kµ

II ,  are fourth order and second order identity tensors. 
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3.4 Inelastic Strain 

 

Inelastic strain includes both strain-rate independent plasticity and time dependant creep. Creep 

is significant at the high temperatures of the solidification processes and is indistinguishable 

from plastic strain [3]. The inelastic strain-rate is defined here with a unified formulation using a 

single internal variable [85,62], equivalent inelastic strain ieε to characterize the microstructure.  

For steel solidification considered here, the equivalent inelastic strain-rate ieε is a function of 

equivalent stressσ , temperature T, equivalent inelastic strain ieε , and steel grade defined by its 

carbon content %C. 

 

)C,%,T,(f ieie εσ=ε            (25) 

 

ij ij
3 ' '
2

σ = σ σ             (26) 

 

 σ  is a deviatoric stress tensor defined by '

 

ij ij kk ij
1'
3

σ = σ − σ δ             (27) 

 

The mild carbon steels treated in this work are assumed to harden isotropically, so the von Mises 

loading surface, associated plasticity, and normality hypothesis in the Prandtl-Reuss flow law is 

applied [86,87]: 
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ij
ie ij ie

'3( )
2

σ
ε = ε

σ
           (28) 

 

ieε has a sign determined by the direction of the maximum principle inelastic strain, as defined in 

equation (29) in order to achieve kinematic behavior (Bauschinger effect) during reverse loading 

[3]. 

 

max
max min

min
ie S ie ij ie ij S

min
max min

max

    
| |2c ( ) ( ) where c

3
| |

ε⎧ ⎫ε ≥ ε⎪ ⎪ε⎪ ⎪ε = ε ε = ⎨ ⎬ε⎪ ⎪ε < ε
⎪ ⎪ε⎩ ⎭

     (29) 

 

3.5 Thermal Strain 

 

Thermal strains arise due to volume changes caused by both temperature differences and phase 

transformations, including solidification and solid-state phase changes between crystal 

structures, such as austenite and ferrite.  

 

ij

T

T
ijth

0

dT)T()( δα=ε ∫            (30) 
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whereα  is temperature dependant coefficient of thermal expansion, and is the reference 

temperature. Thermal strain tensors in this work are calculated from the thermal linear expansion 

function, TLE [3,5], which will be discussed later. 

0T

 

 
3.6 Global Solution of Boundary Value Problem, Materially Non-Linear 

Solution Strategies in Abaqus and CON2D 

 

After applying the standard Galerkin finite element method to the materially nonlinear boundary 

value problem in equation (21), residual force {R} is found, representing the imbalance between 

internal stress in the body and externally-applied loads from body forces and surface tractions [1, 

88, 89, 90]. 

 

{ } [ ] { } [ ] { } [ ] { }
T T T

V V A

R B dV N b dV N dA
Φ

⎛ ⎞
= σ − + Φ⎜⎜

⎝ ⎠
∫ ∫ ∫ ⎟⎟       (31) 

 

Equilibrium is satisfied when the residual force vanishes (at least within prescribed tolerance). 

Similarly to its solution of the heat transfer equation (4), Abaqus solves Eq. (31) incrementally.  

Using the full Newton-Raphson method, equation (32), several “global equilibrium iterations” 

“i” are needed to achieve equilibrium by the end of every time increment t∆ . 

 

[ ]{ } { } { }tt
1i

tttt
1i

tt
1i SPuK ∆+

−
∆+∆+

−
∆+

− −=∆          (32) 
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(32) is solved for { }tt
1iu ∆+
−∆  and then used to update the displacement solution, equation (33), until 

convergence is achieved everywhere at time tt ∆+ . 

 

{ } { } { }tt
1i

tt
1i

tt
i uuu ∆+

−
∆+

−
∆+ ∆+=           (33) 

 

External Load Vector { }ttP ∆+  at time tt ∆+ is defined as 

 

{ } [ ] { } [ ] { }T Tt t t t t t

V A

P N b dV N
Φ

+∆ +∆ +∆= + Φ∫ ∫ dA        (34) 

 

Internal Force { }ttS ∆+  at time is defined as tt ∆+

 

{ } [ ] { }Tt t t t

V

S B+∆ +∆= σ∫ dV           (35) 

 

The tangent stiffness Matrix [ ]ttK ∆+  is defined in equation (37) from the consistent tangent 

operator, or “Jacobian” [ ,  defined in equation (36), which must be consistent with the local 

integration method to provide quadratic convergence of Eq. (32) [91,92,93]. Again [B] contains 

spatial derivatives of the element shape functions [N], while 

]J

t tˆ +∆∆ε is a “guessed” mechanical 

strain increment, based on the current best displacement increment. 

 

t t

t tˆ

+∆

+∆

∂
=
∂∆

J σ
ε

            (36) 
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[ ] [ ][ ][ ]dVBJBK
V

Ttt ∫=∆+           (37) 

 

The nonlinear response to a load increment ∆P is shown in Figure 3.2. The global tangent 

stiffness matrix , which is based on its configuration at time t and ∆P, is used to calculate a 

displacement correction for the first iteration using the equation (32).  The structure 

configuration is updated to  using equation (33). The structure’s internal force is calculated 

from equation (35), and the difference between the total applied load and internal force can be 

calculated in equation (31) to yield the force residual for the first equilibrium iteration

t t
iter 1K +∆

=

t t
iter 1u +∆

=∆

t t
iter 1u +∆

=

t t
iter 1R +∆

= . In 

nonlinear problems the force residual will never be exactly zero, so it compared to a tolerance 

value. If the force residual is less then this force residual tolerance at all nodes, the code accepts 

the solution as being in equilibrium. However, Abaqus also has secondary convergence criteria. 

It checks that the current displacement correction is small relative to the total incremental 

displacement, which is calculated as a sum of all displacement corrections from all previous 

iterations in a current increment. Both convergence criteria must be satisfied before a solution is 

said to have converged for that time increment in Abaqus. The displacement correction 

convergence check often creates unnecessary convergence problems in mostly uninteresting 

liquid/mushy zone with the perfectly plastic constitutive law with very small yielding stress. 

Therefore, the displacement correction convergence is often loosen to enable convergence, while 

the primary force residual convergence criteria is still sufficient to enforce very correct results in 

the solid shell part. If the solution from the first iteration is not converged, second iteration is 

performed to try to bring the internal and external forces into balance. The same procedure is 
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repeated to calculate the displacement correction for second iteration along with new 

force residual that becomes smaller, bringing the system closer to equilibrium. If 

necessary, Abaqus performs further iterations until the system is brought into the equilibrium 

with the convergence tolerance. 

t t
iter 2u +∆

=∆

t t
iter 2R +∆

=

The complete nonlinear solution strategy in Abaqus used in this work is shown in Figure 3.3. If 

the tolerance for NR convergence criteria is exceeded, a new NR iteration starts that performs the 

following tasks: 

 

• New guess for mechanical strain increments is calculated from the current displacement 

increments. 

• Native local integration or UMAT subroutine is called at all material points to perform 

constitutive model integration (also called local integration, stress update algorithm, or 

solution to boundary value problem) and returns updated stress, and Jacobian.  

• Element internal forces and element tangent matrices are calculated and assembled into 

the global assembly.  

• New global displacement field is calculated from (32) and (33) and convergence criterion 

is checked again. 

• Once the NR convergence criterion is satisfied everywhere, a new increment of loading 

history is applied, based on the heat transfer solution for the next time step, and the whole 

process is repeated until the end of the loading history, which is defined as a STEP in 

Abaqus. 
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CON2D uses an Operator Splitting Technique [3,94] with fully explicit initial-strain procedure 

[88,95] to solve equation (31) by alternating between the local and global steps without global 

iterations or consistent tangent operators [3,5].  First, local integration of the constitutive 

equations is used to guess the inelastic strain rate { }t t

ie
ˆ +∆
ε  and stress at each material point, 

assuming total strain rate stays constant over the time step.  The inelastic strain rate is converted 

to an initial strain increment as follows [88,96] 

 

{ } { } [ ] { } { }(t t t t t t t t t
0ˆ D+∆ +∆ +∆ +∆σ = σ + ∆ε − ∆ε )        (38) 

 

{ } { } { }t t t t
0 th i

ˆ t+∆ +∆∆ε = ∆ε + ε ∆e          (39) 

 

Then,  the global equation (31) is manipulated into the following explicit system of linear 

equations given in equation (40), which is solved for displacement increments only once for each 

time increment. The tangent matrix on the left hand side of equation (40) is the same as that of 

linear elasticity. 

 

 

             (40) 
{ } { } { }

{ } { } { }
el el el

el el

t tt t t tT T T
ie th

V V V

t t t t tT T T
el

V V A

ˆ[B ][D][B]dV d [B ][D] tdV [B ][D] dV

[B ][D] dV [N ] b dV [N ] dA
φ

+∆+∆ +∆

+∆ +∆

Σ ∆ =Σ ε ∆ +Σ ∆ε −

−Σ ε +Σ +Σ Φ

∫ ∫ ∫

∫ ∫ ∫ 

 

Finally, the total values of displacement, inelastic strain and total strain are updated as follows. 

 
{ } { } { } { } { } { } { }t tt t t t t t t t t t t

ie ie
ˆd d d , [B] d ,

+∆+∆ +∆ +∆ +∆ +∆= + ∆ ∆ε = ∆ ∆ε = ε t∆

 30



             (41) 

 

and stress is updated with equation (42) 

 

 

             (42) 
{ } { } { } { } { }( )t t t t t t t t tt t

ie th[D]+∆ +∆ +∆ +∆+∆σ = σ + ∆ε − ∆ε − ∆ε

 

Even though this simplified approach for solving the boundary value problem shows some small 

stress oscillations which are not found with the full global NR method from Abaqus, this method 

generally performs well with very low CPU cost. 

 

3.7 Figures and Tables 

 

 

Figure 3.1 Deformation of a body  
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Figure 3.2 Newton-Raphson nonlinear solution strategy  
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Figure 3.3 Flow chart for Abaqus solution of uncoupled thermo-mechanical problem, including    

local material-point level calculations in user-defined UMAT 
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Chapter 4. Local Time Integration of the Constitutive Model 

 

Assuming that the total strain rate at time t is known from the previous time step, equations 

(23,25,26,27,28,29) constitute a nonlinear system with 15 unknowns (2  tensors and 3 scalars) at 

every material point for a three dimensional problem. Owing to the highly strain dependant 

inelastic responses, a robust integration scheme is required to solve this system over a generic 

time increment . The solution obtained from this “local” integration step from all material 

(gauss) points is used to update the global finite element equilibrium equation (31), and solved 

using the finite element procedure from chapter 3. 

t∆

Four different local integration methods are investigated in this work. Abaqus supports the 

CREEP subroutine where viscoplastic laws like (25) just need to be coded and Abaqus will 

integrate them with either its explicit, or implicit built-in algorithm followed by the full local 

Newton-Raphson scheme [1,97].  Alternatively, implicit CREEP can work together with Abaqus 

built-in plasticity, which was used here as one approach to model the liquid/mushy zone. 

On the other hand, an implicit integration  technique based on Lush et al [62], Zabaras et al [98] 

and later Zhu et al [5] in CON2D [3,4] was used here to reduce the equation system to a pair of 

scalar equations with just two unknowns.  These two equations are then solved with either a local 

bounded Newton-Raphson scheme or an explicit scheme from Nemat-Nasser [99,100]. Both of 

these techniques are coded into Abaqus via its user defined subroutine UMAT. The benchmark 

results from all of these methods are produced and compared in chapter 6.  
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4.1 Implicit Local Integration (ODE) from CON2D  

 

The system of ordinary differential equations defined at each material point are converted into 

two “integrated” scalar equations and solved using either 1) bounded Newton-Raphson method; 

or 2) Nemat-Nasser method. 

Knowing the state ( ) at time t, the solution marches forward in time to determine the state 

at .  The Euler backward method of integration is used to convert the system 

of ODEs at each material point, equation (23), to the following equation system: 

ie
tt ,εσ

),(,tt tt
ie

tt ∆+∆+∆+ εσ

 

( )kl
tt

iekl
tt

th
tt

klkl
t
iekl

t
th

t
kl

tt
ijkl

tt
ij )()()()(D ∆+∆+∆+∆+∆+ ε∆−ε∆−ε∆+ε−ε−ε=σ      (43) 

 

By using equations (28) and (25), and by introducing klε̂∆ , (which is the current best estimate of 

the total strain increment from the global solution of the nonlinear finite element equations), to 

replace , equation (43) becomes: tt
kl
∆+ε∆

 

t t
t t t t t t t t t t t t t t t kl
ij ijkl kl th kl ie kl kl th kl ie t t

'3ˆD ( ) ( ) ( ) f(T , , ,%C)
2

+∆
+∆ +∆ +∆ +∆ +∆ +∆

+∆

⎛ ⎞σ
σ = ε − ε − ε +∆ε − ∆ε − σ ε ∆⎜ ⎟

σ⎝ ⎠
t    (44) 

 

Similarly the evolution of equivalent inelastic strain ieε equation (25) is integrated in (45) 

 

t)C,%,,T(f tt
ie

ttttt
ie

tt
ie ∆εσ+ε=ε ∆+∆+∆+∆+         (45) 
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Given the temperature solution from the Heat Transfer procedure, is easy to find. 

Therefore, there are 7 unknown scalars for 3-D problems, (6 components of  plus 

tt
th
∆+ε∆

tt
ij
∆+σ tt

ie
∆+ε ), 

and 5 for 2-D problems. Solving nonlinear tensor equation (44) and nonlinear scalar equation 

(45) for these unknowns is computationally challenging.  

Fortunately, Lush et. al. [62] transformed the tensor equation (44) into a scalar equation for 

isotropic materials with isotropic hardening. 

 

t)C,%,,T(f3 tt
ie

tttttttt*tt ∆εσµ−σ=σ ∆+∆+∆+∆+∆+∆+        (46) 

 

where tt* ∆+σ is equivalent stress of the trial stress tensor (elastic predictor) defined in 

equation (47) 

tt*
ij

∆+σ

 

( )kl
tt

thklkl
t
inkl

t
th

t
kl

tt
ijkl

tt*
ij )(ˆ)()(D ∆+∆+∆+ ε∆−ε∆+ε−ε−ε=σ       (47) 

 

Equations (45) and (46) form a pair of highly nonlinear scalar equations to solve in the local step 

for the two unknowns tt
ie

∆+ε  and tt ∆+σ . Two solution methods that showed the best accuracy, 

convergence, and robustness in previous work [5] are implemented and tested. 

 

4.1.1 Bounded Newton-Raphson Solution of a Pair of Scalar Equations  

 

Lush et. al. [62] and later Zhu et. al. [5] used a two-level iterative scheme to solve (45) and (46) 

that showed fast and robust convergence using different viscoplastic laws in equation (25). 

Details of this scheme can be found at [62,5,3] and here is a brief summary. 
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The main iterative loop, Level 1, solves equation (45) for t t
ie
+∆ε . Using this estimate for t t

ie
+∆ε ,  

equation (46) is solved for 
t t+∆σ  using a bounded Newton-Raphson iteration scheme, which is 

called Level 2. The solution ( t t t t
ie,+∆ +∆σ ε )  is substituted into equation (45) and the estimate for 

t t
ie
+∆ε is corrected using a standard Newton-Raphson scheme on Level 1.   The whole procedure is 

repeated until equation (45) is satisfied within error tolerance.  

Each Level 2 iteration i, upper and lower bounds are set on t t+∆σ . The initial lower bound is 

always zero. The first upper bound is that t t+∆σ  is positive. 

 

t t t t *t t
i i0 gives+∆ +∆ +∆σ > σ ≤ σ          (48) 

 

The second upper bound starts with the condition that f is positive and invertible: 

 

( )
*t t

t t t t
i ief 0 gives f ,

3 t

+∆
+∆ +∆ σ

> σ ε ≤
µ∆

        (49) 

 

( ) ( )( )t t 1 t t t t 1 t t t t t t
ie ie i ie ief , f f , ,+∆ − +∆ +∆ − +∆ +∆ +∆σ = ε ε = σ ε ε

       (50) 

 

Inserting (49) into (50) gives a second upper bound for t t
i
+∆σ assuming that  

1f −  is an incremental function with respect to t t t t
ie ieand .+∆ +ε ε ∆  
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*t t
t t 1 t t
i if ,

3 t

+∆
+∆ − +∆⎛ ⎞σ

σ ≤ ε⎜ ⎟µ∆⎝
e

⎠           (51)  

   

So, the bounds for t t
i
+∆σ are given in equation (52) 

 

t t
lower

*t t
t t *t t 1 t t
upper ie

0

min , f ,
3 t

+∆

+∆
+∆ +∆ − +∆

σ =

⎛ ⎛ σ
σ = σ ε⎜ ⎟⎜ ⎟⎜ ⎟µ∆⎝ ⎠⎝ ⎠

⎞⎞         (52) 

 

If NR
i∆σ is the Newton-Raphson correction from the i-th iteration of Level 2, then the maximum 

allowable correction max
i∆σ is defined by the quasi-bisection rule in (53). 

 

NR t t t t max t t t t
i upper i i lower i

NR t t t t max t t t t
i lower i i upper i

1if 0 ( )
2
1if 0 ( )
2

+∆ +∆ +∆ +∆

+∆ +∆ +∆ +∆

∆σ < ⇒ σ = σ ⇒ ∆σ = σ −σ

∆σ > ⇒ σ = σ ⇒ ∆σ = σ −σ
      (53)  

 

If the absolute value of NR
i∆σ  is larger then the absolute value of max

i∆σ , then the NR correction 

is bounded to max
i∆σ .   Otherwise, the NR correction is used. 

Finally t t
i 1
+∆
+σ is updated from above correction, ie: 

 

t t t t t t
i 1 i i
+∆ +∆ +∆
+σ = σ + ∆σ            (54) 
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The advantage of the local Bounded NR method versus the full local NR method in  solving the 

Level 2 equation is illustrated graphically in Figure 4.1. In this particular case, the local full NR 

method is diverging. 

 

4.1.2 Nemat-Nasser Solution of a Pair of Scalar Equations 

 

Nemat-Nasser et. al. [99,100] developed an explicit constitutive algorithm for their isothermal 

unified model. They observed that most of the deformation in incremental inelastic deformation 

is due to plastic flow with very small elastic deformation. Therefore, at the beginning of each 

increment the scalar measure of the total deformation rate can be approximated, with little error, 

to be due to inelastic deformation. The appealing aspect of this method is its explicit nature, 

which unlike bounded NR method, means that no iterations are required at the local integration 

level. 

By defining the initial inelastic strain rate t t0
ie
+∆ε to equal the total strain rate in equation (55) 

 

*t t t
t t0

ie t t3 t

+∆
+∆

+∆

σ − σ
ε =

µ ∆
           (55) 

 

Equation (46) can be written as: 

 

(t t t t t t t0 t t
ie ie3 t+∆ +∆ +∆ +∆σ −σ = µ ∆ ε − ε )          (56) 

 

 39



Initial approximations of the effective inelastic strain and effective stress from equations (45) 

and (50) are given by: 

 

t t0 t t t0
ie ie ie t+∆ +∆ε = ε + ε ∆            (57) 

 

(t t0 1 t t0 t t0
ie ief ,+∆ − +∆ +∆σ = ε ε )

t

          (58) 

 

Function f-1 can be approximated at time t + ∆ by a truncated Taylor series with initial values 

from equations (56) and (59). 

 

( ) (
1 1

t t t t0 t t t t0 t t0 t t
0 ie ie 0 ie ie

ie ie

f f| |
− −

+∆ +∆ +∆ +∆ +∆ +∆∂ ∂
σ = σ + ε − ε + ε − ε

∂ε ∂ε
)      (59) 

 

Solving  equations  (45), (56), (57),  and (59) together for tt ∆+σ and tt
ie

∆+ε  gives: 

 

t t t
t t

1

+∆
+∆ γσ + σ

σ =
+ γ

0

           (60) 

 

t t0 t
t t t t t0

ie ie ie t tt
3 (1

+∆
+∆ +∆

+∆

σ −σ
ε = ε + ε ∆ −

)µ + γ
         (61) 

 

where 
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1 1

0 0 t t
ie ie

f 1 f 1| |
t 3

− −

+∆

⎛ ⎞∂ ∂
γ = +⎜ ∂ε ∆ ∂ε µ⎝ ⎠

⎟          (62) 

 

Equations (55), (57), (58), (60), (61), and (62) give an approximate explicit solution of a pair of 

integrated scalar equations (45) and (46). 

If the material response is essential elastic, which is given by condition t t t
ie ie
+∆ε < ε , the alternative 

solution suggested by Nemat-Nasser et al. [99,100] is: 

 

t t *t t t t t t t t
ie3 f (T , , ,%C)+∆ +∆ +∆ +∆σ = σ − µ σ ε ∆t         (63) 

 

t t t t t t t
ie ie ief (T , , ,%C) t+∆ +∆ε = ε + σ ε ∆          (64) 

 

4.2 Treatment of Liquid/Mushy Zone   
 
 
In this model, elements containing both liquid and solid are generally given no special treatment 

regarding either material properties or finite element assembly. The only difference is to choose 

a constitutive law that enforces negligible liquid strength and stress when the current temperature 

is higher then the solidus temperature. This fixed-grid approach avoids difficulties of adaptive 

meshing or “giving birth” to solid elements as used in Ansys [76]. 

 

Two different approaches are implemented: 

• Elastic-Perfectly plastic rate independent model with small yield stress  

• Extremely rapid creep rate function in the liquid/mushy zone 
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4.2.1 Elastic-Perfectly Plastic Model in Liquid/Mushy Zone 

 

The first approach implements an isotropic elastic-perfectly-plastic rate-independent model for 

liquid or mushy elements, defined when T > Tsol  for at least one  material point.  The yield stress 

is chosen small enough to effectively eliminate stresses in the liquid-mushy zone, 

but also large enough to avoid computational difficulties. These liquid/mushy elements use the 

standard radial-return algorithm, which is a special form of backward-Euler procedure. [92,77, 

88] given in equation (65) 

Y 0.03MPaσ =

 

t t *t t t t t t:+∆ +∆ +∆ +∆= − ∆λσ σ D a           (65) 

 
*t tσ +∆  is elastic stress predictor given by  

 
 

*t t t t tˆ:σ σ ε+∆ +∆= + ∆D            (66) 
 

t t+∆a  is a flow vector which is a normal to the yield surface given by a function g 
 
 

t t g+∆ ∂
=
∂σ

a                                                                                                                      (67) 

 
 
In case of Von Mises yield criteria, the yield surface is a circle in deviatoric stress space and the 

flow vector at enlarged yield surface at trail elastic position *t t+∆a is the same as the flow vector 

at final position on the yield surface t t+∆a (Fig 4.3). This significantly simplifies the solution 
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procedure and no iterations are required to get an exact solution. The algebraic equations 

associated with integrating the model are developed here for a single variable, equivalent 

inelastic (plastic) strain increment ieε∆ which is the same as ∆λ , a plastic strain multiplier for 

von Mises yield surface. The plastic stress corrector, which returns trail elastic solution in radial 

direction back to the von Mises yield surface, is given in (68) [92, 77, 88]. 

 

t t
t t t t '*t tie

*t t

3:
+∆

+∆ +∆ +∆
+∆

∆ε µ
∆λ =

σ
σD a          (68) 

 

µ  is the shear modulus, is a deviatoric stress at trial elastic position and '*t t+∆σ *t t+∆σ  is its 

equivalent stress. Splitting the stress update into volumetric and deviatoric parts [92] and using 

(68) gives 

 
t t t t t t *t t * t t
ij kk ij ij kk ij ij*t t

1 1 3' 1
3 3

+∆ +∆ +∆ +∆ +∆
+∆

µ∆λ⎛ ⎞σ = σ δ + σ = σ δ + − σ⎜ ⎟σ⎝ ⎠
'                                          (69) 

  
Since plastic deformation is independent of hydrostatic stress, equating the volumetric 
components, , equation (69) simplifies to relate the deviatoric stress components as 
follows: 

*t t t t
kk kk
+∆ +∆σ = σ

 
 

t t
t t * t t * t tie

ij ij ij*t t

3
' ' 1 '

+∆
+∆ +∆ +∆

+∆

⎛ ⎞µ∆ε
σ = ησ = − σ⎜ ⎟σ⎝ ⎠

        (70) 

 

These deviatoric stresses must satisfy the von Mises yield criterion given by yield function g 

 

t t t t t+ t t t t t *t t t t t t
Y ie Y ieg ( ) ( ) (+∆ +∆ ∆ +∆ +∆ +∆ +∆ +∆= σ − σ ε = ησ − σ ε ='σ ) 0      (71) 
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For nonlinear hardening, Y

ie
HR ∂σ= ∂ε

is not constant so equation (71) is nonlinear and can be 

solved for t t
ie
+∆∆ε  by the full Newton-Raphson method. For the present perfect plasticity, HR=0, 

and (71) gives the simple solution for t t
ie
+∆∆ε  

 

*t t
t t Y

ie 3

+∆
+∆ σ − σ

∆ε =
µ

                                                                                                      (72)  

 

At the beginning of every increment, a trial stress (elastic predictor) *t tσ +∆  is calculated   

from (66). *t t+∆σ is then calculated from (27) and (26) and compared with t t
Y ie( )σ ε . If *t t t

Y
+∆σ < σ  

only elastic response is calculated.  Otherwise if  *t t t
Y

+∆σ ≥ σ , the material yields and tt
ie

∆+ε∆  is 

either solved from (71) for a material with hardening, or calculated directly from (72) for perfect 

plasticity.  Once t t
iee +∆∆ = ∆λ is found, t t+∆σ  is given from (69), and t+ t

ie
∆∆ε is calculated from the 

flow rule, given by the Prandtl-Reuss equation (73) [86]. 

 

t t
ijt t t t

ie ij iet t

'3( )
2

+∆
+∆ +∆

+∆

σ
∆ε = ∆ε

σ
          (73) 

 

Finally, plastic strains at the end of the increment t t
ie
+∆ε are updated. 

The Consistent Tangent Operator (Jacobian), consistent with the backward-Euler integration, 

provides a quadratic convergence of the global equilibrium equations when using the Newton-

Raphson method [92,91]. 
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( ) ( *t t *t t
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2k 2 '
3

+∆ +∆µη⎛ ⎞= − ⊗ + µ η −β ⊗⎜ ⎟
⎝ ⎠

J I I I σ σ )'                                                    (74) 

 

where I and are respectively fourth and second order identity tensors and I

 

B
Ek (Bulk Modulus)

3(1 2 )
=

− υ
          (75) 
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( ) ( )

*t t

2 t t*t t

3 1 1
3 HR2

+∆

+∆+∆

⎛ ⎞σ⎜β = − η −
⎜ ⎟∆λ µ +σ ⎝ ⎠
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4.2.2 Rapid Creep Rate Function in Liquid/Mushy Zone 

 

An alternative way to treat liquid and mushy material is to create a viscoplastic constitutive 

relation that acts as a penalty function to generate inelastic strain in proportion of the absolute 

difference between equivalent stress σ and a small yield stress Yσ  [3,5,6]. 

 

( )S
S Y S Y

Vie

S Y

c
c c

0 c

⎧ ⎫σ − σ σ > σ⎪µε = ⎨
⎪ ⎪σ ≤ σ⎩ ⎭

⎪
⎬          (77) 

 

Sc  is a sign defined in equation (29), while the parameter 1
V
−µ  is  a large number. For large 

values of , which physically match the reciprocal of the viscosity of molten steel 1.5x101
V
−µ 8 

MPa-1s-1, numerical difficulties were experienced with Abaqus global NR equilibrium iterations 
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even when using the robust local viscoplastic scheme from section 4.  Thus, much smaller 

numbers for  had to be chosen that were still able to enforce negligible strength and stress in 

mushy/liquid zone and produce accurate stress results.   

1
V
−µ

The CON2D model handles large 1
V
−µ without problem.  In alloy systems with large mushy 

zones, the restriction of flow through the dendrite network could generate both stress and hot 

tearing in the mushy zone [101].  This behavior can be taken into account in this model by 

choosing the value of  according to the actual permeability of the mushy zone.  Further details 

on this idea are given elsewhere [3]. 

Vµ

 

4.3  Summary of Local Integration Algorithm Applied in UMAT 

 

Starting from an equilibrium at some time t, Abaqus provides subroutine UMAT with time 

increment , stress vector { } , total mechanical strain vector t∆ tσ { }tε ,  inelastic strain vector{ }t
ieε  

(which is supplied via the array of state variables STATEV), and an initial guess for total 

mechanical strain increment vector { } calculated from current displacement increments, see 

Fig. 4.1. Thermal strains at time t, 

ttˆ ∆+ε∆

{ }t
thε , and increments of thermal strains { are 

computed from the previous transient heat transfer analysis and subtracted from 

} tt
th

∆+ε∆

{ }tε  and 

 respectively. { } ttˆ ∆+ε∆

 The subroutine UMAT has then to supply Abaqus with a stress vector{ }tt ∆+σ , updated according 

to the constitutive laws, and the consistent tangent operator defined in equation (36). An accurate 

Jacobian (CTO) is essential to achieve fast quadratic convergence in the global NR iterations 
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[91,93]. Also, the updated inelastic strain vector { } tt
ie

∆+ε is carried to the next iteration via 

updated STATEV array [1]. 

If the current temperature exceeds Tsol, the material point still contains liquid so the elastic-

perfectly plastic algorithm from section 4.2.1 may be used.  If equation (77) is used for the 

liquid, or if the material point is solid, then the following 6 steps are used for time integration of 

the elastic-viscoplastic constitutive law, given in the form of equation (25) for the inelastic strain 

rate. 

 

Step 1, Calculation of equivalent stress and equivalent inelastic strain at time t 
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ε+ε+ε+ε−ε+ε−ε+ε−ε=ε    (79) 

 

Step2, Calculation of trial stress vector { }t t* +∆
σ , deviatoric trial stress vector { }t t*'

+∆
σ , and 

equivalent trial stress *t t+∆σ  

 

{ } [ ] { } { } { }(t t t t t t t t*
ie ˆD

+∆ +∆ +∆σ = ε − ε + ∆ε )         (80) 

{ } { } ( )t t t t* * *t t *t t *t t T
x y z

1' {1,1,1,0,0,0}
3

+∆ +∆ +∆ +∆ +∆σ = σ − σ + σ + σ      (81) 

( )*t t *t t *t t 2 *t t *t t 2 *t t *t t 2 *t t 2 *t t 2 *t t 2
x y y z z x xy yz zx

1 ( ) ( ) ( ) 6 ( ) ( ) (
2

+∆ +∆ +∆ +∆ +∆ +∆ +∆ +∆ +∆ +∆σ = σ −σ + σ −σ + σ −σ + σ + σ + σ )    (82) 
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Step 3, Solve a pair of scalar nonlinear equations (45) and (46) for tt
ie

tt and ∆+∆+ εσ  by using 

methods from 4.1.1 or 4.1.2. 

 

Step 4, Calculate radial-return factor , expand stress vector tt ∆+η { } tt ∆+σ , calculate { }  t t' +∆σ

 

t t
t t

*t t

+∆
+∆

+∆

σ
η =

σ
            (83) 

{ } { } ( )t tt t t t * *t t *t t *t t T
x y z

1' {111000}
3

+∆+∆ +∆ +∆ +∆ +∆σ = η σ + σ + σ + σ      (84) 

{ } { } ( )t t t t t t t t t t T
x y z

1' {111000}
3

+∆ +∆ +∆ +∆ +∆σ = σ − σ + σ + σ       (85) 

 

Step 5, Calculate increments of inelastic strains from Prandtl-Reuss flow law, update the 

inelastic strains and store them in STATEV array. 

 

{ } { }t t
t t t t

ie iet t

'3
2

+∆
+∆ +∆

+∆

σ
∆ε = ∆ε

σ
          (86) 

{ } { } { }t t t t t
ie ie ie

+∆ +∆ε = ε + ∆ε           (87) 

 

 

Step 6, Calculate Jacobian (Consistent Tangent Operator) 

 

The derivation of the Jacobian for this form of constitutive laws is given in [62]. The final 

expression is given in Eq. (88) in tensor notation. 

 48



 

( )
t t t t

t t t t t t t t t t t t t t t t t t
J

22 2
3

+∆ +∆
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The above variables were defined except normal flow tensor N and constant cJ 
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J
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1 tc
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+∆

− ε ∆
=

⎛ ⎞∂ε ∂ε
+ ∆ µ −⎜ ⎟∂σ ∂ε⎝ ⎠

         (90) 

 

The derivatives in (79) are found from the strain rate laws given in equations (77) or (25) 

evaluated at  tt ∆+

 

4.4 Two Dimensional Problems  

 

In many solidification processes, such as the continuous casting of steel, one dimension of the 

casting is much longer than the others, and is otherwise unconstrained.  In this case, it is quite 

reasonable to apply a condition of generalized plane strain in the long direction (z), and to solve 

a two-dimensional thermal stress problem in the transverse (x-y) plane.  This condition 

reasonably allows a two-dimensional computation to produce the complete three-dimensional 

stress state in the plane section. 
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The generalized plane strain condition assumes that strain in the undiscretized longitudinal direction z is 

a linear function of the in-plane coordinates: 

 

zz a bx cyε = + +                                                                                                              (91) 

 

The unknown constants (a,b,c) are solved together with the in-plane displacements, adding three extra 

degrees of freedom to the global system of equations for the entire domain.   The associated additional 

equation for a is: 

 

zz zdA Fσ =∫                                                                                                                   (92) 

 

where Fz is an external mechanical force acting in the z direction.  The two additional equations for b 

and c are: 

 

zz xydA Mσ =∫                                                                                                                (93) 

zz yxdA Mσ =∫                                                                                                                 (94) 

 

where Mx, My are external mechanical moments in the x and y directions respectively.     

A simplification of this condition occurs when two-fold symmetry causes the axial strain to be a 

constant (εzz = a).  In this case, Mx, My, b and c all equal zero, and only one additional global equation 

must be solved for a.  Furthermore, the axial force, Fz is set to zero, when there is no axial load or 
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constraint.  The axial strain, a, is generally negative for solidification problems, as it accounts for the 

average thermal shrinkage of the plane section.  

 

4.5 Figures and Tables  

 

 

 

Figure 4.1 Bounded NR Method 
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Fig 4.2 Radial-return method for von Mises yield Surface 
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Chapter 5. Model Validation 
 
 

 
A semi-analytical solution of thermal stress in an unconstrained solidifying plate, derived by 

Weiner and Boley [2] is used here as an ideal validation problem for solidification stress models.  

This one-dimensional solution takes advantage of the large length and width of the casting.  

Thus, it is reasonable to apply the generalized plane strain condition, discussed in the previous 

section, in both the y and z directions, to produce the complete 3-D stress and strain state. 

The domain adopted for this problem is a thin slice through the plate thickness using 2-D 

generalized plane strain elements (in the axial z direction) with zero relative rotation (ie b=c=0 in 

equation.(91). The domain moves with the strand in a Langrangian frame of reference as shown 

in Fig. 5.1. In addition, a second generalized plane strain condition was imposed in the y-

direction (parallel to the surface) by coupling the displacements of all nodes along the bottom 

edge of the slice domain as shown in Figure 5.2.  This was accomplished using the *EQUATION 

option in Abaqus [1].  The normal (x) displacement of all nodes along the bottom edge of the 

domain is fixed to zero.  Tangential stress was left equal zero along all surfaces.  Finally, the 

ends of the domain are constrained to remain vertical, which prevents any bending in the xy 

plane. 

The material in this problem has elastic-perfectly plastic constitutive behavior. The yield stress 

drops linearly with temperature from 20 MPa at 1000oC to zero at the solidus temperature 

1494.4oC, which was approximated by 0.03 MPa at the solidus temperature.  A very narrow 

mushy region, 0.1oC, is used to approximate the single melting temperature assumed by Boley 

and Weiner. All the constants used in this solidification model are listed in Table 4.I 
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Abaqus with UMAT is tested with both elastic-perfectly-plastic algorithm from section 4.2.1, 

and a robust viscoplastic algorithm from section 4.1 applied to the rapid liquid strain function 

equation (77) to emulate elastic-perfectly-plastic behavior.  Also, an in-house code, CON2D 

[3,5,6] code is used to solve this problem as well as the realistic problem from chapter 6. In the 

latter elastic-viscoplastic model, the constitutive relation was transformed into a computationally 

more challenging form, the highly nonlinear creep function of Eq. (77) with  

1 8 1
V 1.5x10 MPa sec−µ = 1− −

, and σY =0.01 MPa in the liquid.   

Figure 5.2 shows the domain and boundary conditions for both the heat transfer and mechanical 

models.  Heat transfer analysis is run first to get the temporal and spatial temperature field. Stress 

analysis is then run using this temperature field. The domain in Abaqus has a single row of 300 

plane 4 node elements in both thermal and stress analysis. CON2D uses a similarly refined mesh 

with 6-node, quadratic triangular elements. 

Figures 5.3 and 5.4 show the temperature and the stress distribution across the solidifying shell at 

two different solidification times. The semi-analytical solutions were computed with MATLAB 

by C. Li et. al. [3].  The almost-linear temperature gradient through the shell gradually drops as 

solidification proceeds.  This faster cooling of the interior relative to the surface region naturally 

causes interior contraction and tensile stress, which is offset by compression at the surface.  The 

changes in slope at ~ -15 and +12 MPa denote the transition from the elastic central region to the 

plastically-yielded surface and interior.  Both lateral stress distributions (y and z directions) are 

the same for both codes, which is expected from the identical boundary conditions in these two 

directions.  Shear stresses and x-stress are all zero.  Identical results were found with the 

perfectly-plastic and the viscoplastic liquid functions coded in UMAT, so there is a single 

Abaqus curve representation on the graphs.  The original boundary condition prescribed an 
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abrupt surface quench to 1000 oC, which causes convergence problems for Abaqus at early 

times.  Instead applying a convection boundary condition with a film coefficient of 250,000 

W/m2C alleviated the convergence problems and improved the stress results (under 1% error). 

CON2D produced similar accuracy with the semi-analytical solution. 

CPU times were also similar between CON2D and Abaqus with the elastic-perfectly-plastic 

(radial return) algorithm. The viscoplastic algorithms from section 4.1 coded in Abaqus were 

~10 times slower, and experienced computational difficulties, which required lower 1
V
−µ , and 

resulted in ~4% error.  

The two CREEP methods supported in Abaqus [1, Y19] were also tested for this problem using a 

less nonlinear form of Eq. (77) with smaller 1
V
−µ   The implicit CREEP method always failed 

to converge despite many attempts, even when used in conjuction with  Abaqus built-in plasticity 

alogoritham based on classic radial-return method (section 4.2.1) for an elastic-perfectly plastic 

liquid/mushy zone.  The explicit CREEP also experienced convergence problems, but did 

converge with the easier, but less accurate lower 1
V
−µ  equation.  Although the stress results were 

comparable, the CPU times with explicit creep were ~20 times larger compared to Abaqus with 

the UMAT of this work or CON2D. 

Abaqus automatically adjusts the time increment size, based on the convergence criteria from the 

previous time increment [1], starting from an initial time increment of 10-5 at 0s, and increasing 

to 0.3s after 15s.  Time increments are specified manually in CON2D to increase logarithmically 

from 0.001s at 0s to 0.1s at 21s. A formal study of mesh and time increment refinement was 

conducted for CON2D by Zhu at al. [5], which shows that the 300-node mesh used here is more 

than sufficient to achieve accuracy within 1% error with a fixed time increment of 0.01s (1000 
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time increments per 10 s), Figure 5.5.  Further convergence studies with CON2D for this 

problem were performed by Li & Thomas [3], including variable mesh and time increment sizes. 

 

5.1 Figures and Tables  

 

 

 

 

 

 

 

 

Figure 5.1 Solidifying slice  

 

Figure 5.2 Mechanical and thermal FE domains 
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Figure 5.3 Temperature distribution along the solidifying slice 
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Figure 5.4 Y and Z Stress distributions along the solidifying slice  
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Figure 5.5 Convergence study [5] 

 

 

Table 5.I Constants used in solidification test problem 
 

Conductivity      [W/mK 33.0 
Specific Heat      [J/kg K] 661.0 
Elastic Modulus in Solid [GPa] 40.0 
Elastic Modulus in Liquid [GPa] 14.0 
Thermal Linear Expansion Coefficient [1/K] 0.00002 
Density [kg/m3 ] 7500. 
Poisson’s Ratio 0.3 
Liquidus Temperature [o C] 1494.45 
Fusion Temperature (analytical) [o C] 1494.4 
Solidus Temperature  [o C] 1494.35 
Initial Temperature [o C] 1495.0 
Latent Heat [J/kg K] 272000.0 
Reciprocal of Liquid viscosity [MPa-1sec-1] 1.5x108

Surface Film coefficient [W/m2K] 250,000 
 

 58



Chapter 6. Uncoupled Analysis of Solidifying Slice in Continuous 

Casting Mold 

 

6.1 Material Properties, Loads, Constitutive Law  

 

The FE model of solidification of a slice, with the identical mesh of nodes and elements that was 

validated in the previous section, was next applied to a realistic problem of continuous casting of 

steel with temperature-dependent properties and boundary conditions matching typical plant 

conditions.  The artificial surface quenching condition was replaced with an instantaneous 

interfacial heat flux profile that varied with time down the mold according to mold thermocouple 

measurements [3] and is given in equation (95), and Fig.6.1. This heat flux boundary condition 

was input to Abaqus using the DFLUX subroutine. 

 

[ ]( ) 1/ 22q̂ MW / m 6.5 t s 1
−

⎡ ⎤ = +⎣ ⎦          (95) 

 

Constitutive Eq. (25) was chosen for solidifying plain-carbon steel in the austenite phase using 

the rate-dependent, elastic-visco-plastic model III of Kozlowski [61] given in Eq. (96).  This 

model was developed to match tensile test measurements of Wray [53] and creep test data of 

Suzuki [57]. 
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This empirical relation relates the equivalent inelastic strain rate ieε with the von Mises stress σ , 

equivalent inelastic strain ieε , activation constant Q, steel grade %C, and several empirical 

temperature- or steel-grade-dependant constants . 1 2 3 Cf , f , f , f

Another constitutive model, so called enhanced power law model [5] was added to the UMAT 

lately to simulate delta ferrite phase with relatively higher creep rate than austenite phase, Eq. 

(96A). The constitutive model given in Equation (96A) is applied in the solid whenever the 

volume fraction of ferrite is more than 10%. Otherwise, Equation (96) is applied. The calculation 

of the volume fractions is adopted from CON2D [5,8]. 
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Temperature dependent properties were chosen for %0.27C plain carbon steel with Tsol=1411.79 

oC and Tliq=1500.72 oC. All temperature dependant material property calculations are an integral 

part of the CON2D code [3,5,6], and were extracted for Abaqus input. Fig.6.2 shows the 

fractions of solid phases and liquid for this steel [3], which confirms the assumption of single-

phase austenite for the solid over the temperature range of interest. 

The enthalpy curve used to relate heat content and temperature in this study, H(T), is shown in 

Fig. 6.3.  It was obtained by integrating the specific heat curve fitted from measured data of R. 

D. Pehlke et. al. [103]. Abaqus tracks the  latent heat Hf=257,867 J/kg separately from the  

specific heat cp(T), which is found from the slope of this H(T) curve, except in the solidification 

region, where cp is found  [78] using equation (97). Equation (97) assumes that the fraction of 

solid is a linear interpolation between the liquidus and solidus temperatures, while CON2D is 

using the leveler rule [79] which assumes that the solid develops more slowly when cooling 

through the higher temperature ranges, and more rapidly as the solidus temperature is 

approached. 

 

( )p
liq sol

dH Hfc (T)
dT T T

= −
−

          (97) 

 

The temperature dependent conductivity function for 0.27%C plain carbon steel is fitted from 

measured data by Harste et. al. [103], and given in Fig.6.4. The conductivity increases in the 

liquid region by a factor of 6.65 to partly account for the effect of convection due to flow in the 

liquid steel pool [104]. Density was assumed constant at this work, 7400 kg/m3, in order to 

maintain constant mass.  
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Thermal strain can be calculated from the temperature changes simulated by the heat transfer 

model and from the unified state function, TLE, thermal linear expansion, which includes the 

volume change of materials undergoing both temperature change and phase transformation, Fig. 

6.5 [3]. The thermal strain in CON2D is expressed by equation (98) [3]. 

 

{ } ( ){ }T
th refTLE(T) TLE(T ) 111000ε = −         (98) 

 

Tref  is an arbitrary reference temperature, typically either Tsol or 20oC.  This thermal linear 

expansion function was obtained from solid phase density measurements compiled by K. Harste 

et. al. [103, 105] equation (99), while in liquid/mushy zone by density measurements by Jimbo 

and Cramb et. al. [106].  

 

1
)T(
)T(

TLE 3 ref −
ρ
ρ

=            (99) 

 

Abaqus calculates thermal strains from equation (100) [1] 

 

{ } ( ) ( )( ) { }T
th ref init init ref(T) T T (T ) T T 111000ε = α − − α −       (100) 

 

where is the temperature-dependant coefficient of thermal expansion, T)T(α init is initial 

temperature (pouring temperature), and Tref is a very important reference temperature. 

The following expression is used to calculate )T(α  from TLE: 
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ref

TLE(T ) TLE(T)(T)
T T

−
α =

−
          (101) 

 

Identical thermal strain results are produced with Abaqus for Tref = 20oC and Tref = Tsol, though 

 curves have totally different shape, see Fig 6.7 and 6.8. This is a clear sign that the 

expression from equation (101) is correctly calculating 

)T(α

)T(α  from TLE. Fig.6.7 has )T(α  for 

Tref = 20oC. 

Elastic modulus E generally decreases as the temperature increases, although its value at high 

temperatures is uncertain. The temperature-dependent elastic modulus curve used in this model 

was fitted from measurements from Mizukami et. al. [107] by Kozlowski [61]  as shown in 

Fig.6.6. Unlike in other models, the elastic modulus of the liquid here was given the physically 

realistic value of 14GPa. This value also avoids numerical trouble from excessively small values 

in the stiffness matrix. Actually, the value of the elastic modulus in the liquid has little effect on 

the stress results, due to the negligible strength of the liquid. Poisson ratio is 0.3 constant. All 

other material constants are listed in table 6.I. 

 

6.2 Results and Comments 

 

A 21s simulation was performed, which corresponds to 700mm long shell of cast steel at a 

casting speed of 33.3mm/s (2m/min). The temperature and stress distribution results along the 

solidifying slice are presented at four times during solidification for both codes in Fig.6.9 and 

Fig.6.10.  The temperature and stress histories are given for two material points in Fig. 6.11 and 

Fig. 6.12. Temperature and stress contours are constructed from the transient results in Figs. 6.13 
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and 6.14, and represent the steady-state appearance of the solidifying shell.  The shape of the 

tensile region that forms inside the shell, and the development of surface compression are clearly 

revealed.  These stress distributions are qualitatively similar to that of the semi-analytical 

solution.  The shape changes slightly due to the change in heat flux and properties.  The 

temperature results predicted by Abaqus and CON2D match except near the solidification front, 

where an unplanned difference in phase fraction evolution causes minor variations. This causes 

minor variations in the stress results, although there is still a reasonable match.  The operator-

splitting method in CON2D produced minor oscillations in the stresses, such as the bump at ~1s 

in Fig. 6.9 and 6.12. 

Integration of the enhanced delta power constitutive law from Eq. (96A) is tested with the steel 

grade 0.10%C. All material properties for the 0.10%C steel grade are first extracted from 

CON2D. Since 0.10%C steel grade has a strong presence of delta phase [8], the enhanced delta 

power law is integrated most of the time in solid. The temperature and stress results are 

compared with the 0.27%C steel grade results in Fig 6.15 and 6.16. The 0.27%C steel grade is 

used throughout this work and is know for a strong presence of a single austenite phase in solid, 

and therefore integrating only the Kozlowski III law (96). There are visible differences between 

the temperature and stress distributions stress, and there is a spike in the stress results for 

0.10%C in the transition zone from austenite to delta-ferrite phase observed also in previous 

work [5,6,8].  Since the enhanced delta power law has much more creep, it takes five times more 

cpu time to integrate the enhanced power law (96A) compared to the Kozlowski III law (96).  

Detailed CPU benchmark results are presented in Table 6.II for all combinations of methods 

compared.  Simulations were performed on an IBM p690 with Power 4, 1.3 Ghz CPU running 

under AIX 5.1 OS.  Abaqus required 2-3 global NR iterations per increment, and 5.6 minutes of 
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CPU time for the 21s. stress simulation with the elastic-perfectly plastic (radial-return) algorithm 

for liquid/mush. Depending on severity of the nonlinearity in the strain rate – stress function, (ie 

value of ), between 30 minutes and 2 hours were needed for the same simulation using Eq. 

(77) for the liquid.  Even though Nemat-Nasser is an explicit local solution method, it was only 

slightly faster then the local bounded Newton-Raphson method. However, benchmarks 

performed by Zhu et. al. [5] found that the Nemat-Nasser method produced incorrect results for 

some viscoplastic laws, while the local bounded NR method was reliable in all cases. As found 

in section 5, Abaqus implicit built-in integration (via CREEP subroutine) failed to converge, 

while explicit CREEP was very slow. There were no visible differences between any of the 

Abaqus stress results using the four different local integration algorithms that converged.   

1
V
−µ

CON2D had similar performance to Abaqus for the same local method, showing that the 

operator-splitting approach is reasonable, if the oscillations can be tolerated.  

In conclusion, the implicit viscoplastic integration algorithm followed by the bounded NR 

scheme at the local level is the best, most robust method for solving solidification problems with 

highly-nonlinear elastic-viscoplastic constutitive equations.  Coding this method into a UMAT 

enables Abaqus to perform as well as the in-house CON2D code.  Either full NR or operator-

splitting are effective methods at the global level.  The elastic-perfectly-plastic algorithm (radial 

return) method is an efficient method to handle the liquid/mushy region.   The rapid creep-type 

function for treating liquid (Eq. 77) has the advantage of accurately simulating liquid flow that is 

important for the quantitative prediction of hot tear cracks between dendrites at the solidification 

front [3,108].  Using the UMAT, Abaqus is now ready to tackle large-scale finite-element 

simulations of solidification processes, including multi-dimensional analysis of continuous 

casting. 
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6.3 Ideal Taper Based on Shell Shrinkage for Different Casting Speeds 

 

Even though the geometry of the slice model in this chapter is relatively simple, it can be still 

effectively used to predict the ideal mold taper which compensate for shrinkage of the solidifying 

strand to maintain good contact and heat transfer between the mold and shell surface without 

applying extra frictional force. The amount of taper needed varies with steel composition, mold 

length, casting speed, and type of lubrication. [8]. 

The transversal strain slice results from this chapter for 0.27%C steel, with all austenite phase 

using Kozlowski III constitutive law from Eq. (96) and with the heat flux BC from Eq. (95), are 

used to predict the shell shrinkage, or ideal mold taper, from the narrow mold side assuming the 

width of the wide mold side to be 1m. Due to the Langrangian frame of reference, the times that 

the slice spends in 0.7 m long mold are easily calculated for the four different casting velocities.  

Assuming that the heat flux curve, Fig. 6.1 remains constant with speed, and that all slices along 

the mold width behave the same, transversal strain histories corresponding to these times are 

extracted from Abaqus post-processing tool in form of xy data files. Those files are than read 

into Matlab [110], and the percentage of ideal taper per unit of the mold length is calculated as a 

function of current time bellow  meniscus for each casting velocity using Eq, (101A) 

 

cast

E22(t) W 100(%taper/m) =
v  t

         (101A) 

 

Where E22(t) is time dependant total transverse strain, W=1m is the width of the wide mold face, 

vcast is the casting velocity, and t is the current time bellow the meniscus. These results are 
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compiled in one graph in Fig. 6.17 where the time dependence is replaced by the distance bellow 

the meniscus and plotted along the mold length of 0.7m. 

It can be observed from Fig 6.17  that increasing casting speeds tends to decrease the ideal taper 

due to less time spend in the mold, hotter shell, and less shrinkage. The steel tends to shrink most 

in the upper region of the mold where taper should be high. In lower portion of the mold the 

thermal resistance of the thicker shell combined with a thicker mold power layer lower the heat 

flux and shell shrinkage, so the taper should be smaller. The results indicate that taper should 

decrease greatly from the top to the bottom of the mold, so a multifold taper is recommended 

rather than a linear one. The conclusions derived from this simple slice model are consistent with 

the findings of Li and Ojeda [109], who used CON2D model for prediction of ideal taper in high 

speed billet casting.  Before implementing into the actual caster, further work would be needed 

to incorporate the effects of mold distortion, changes in heat flux with casting speed, and steel 

grade.   

 
 

6.4 Figures and Tables  
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Figure 6.1 Instantaneous interfacial heat flux 
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Figure 6.2 Phase fractions for 0.27%C carbon steel 
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Figure 6.3 Enthalpy for 0.27 %C plain carbon steel  
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Figure 6.4 Thermal conductivity for 0.27%C  plain carbon steel  
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Figure 6.5 Thermal linear expansion (TLE) of plain carbon steels  

 

 

Figure 6.6 Elastic modulus for plain carbon steel 
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Figure 6.7 Coefficient  of thermal linear expansion for 0.27%C plain carbon steel, Tref=20C 
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Figure 6.8 Coefficient of thermal linear expansion for 0.27%C plain carbon steel, 

Tref=Tsol=1411.79C 
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Figure 6.9 Temperature distribution along the solidifying slice in continuous casting mold 

0 1 2 3 4 5 6 7 8 9 101112131415
-14

-12

-10

-8

-6

-4

-2

0

2

4

Distance to the chilled surface [mm]

S
tre

ss
 [M

P
a]

Abaqus 1 sec
CON2D 1 sec
Abaqus 5 sec
CON2D 5 sec
Abaqus 10 sec
CON2D 10 sec
Abaqus 21 sec
CON2D 21 sec

 

Figure 6.10 Lateral (y and z) stress distribution along the solidifying slice in continuous casting 

mold 
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Figure 6.11 Temperature history for the surface material point and the material point 5 mm from 

the surface 
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Figure 6.12 Lateral stress history for the surface material point and the material point 5 mm from   

the surface 
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Figure 6.13 Temperature contours 

 

 

Figure 6.14 Stress contours 

 74



 

Fig. 6.15 Temperature distributions for 0.27%C and 0.10%C steel grades 

 

 

Fig. 6.16 Stress distributions for 0.27%C and 0.10%C steel grades, which have 2 different const. 

laws 
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Figure 6.17 Ideal taper prediction for different casting speeds  
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Table 6.I Material constants  

Density [kg/m3 ] 7400. 
Poisson’s Ratio 0.3 
Liquidus Temperature [o C] 1411.79 
Solidus Temperature  [o C] 1500.70 
Initial Temperature [o C] 1540.00 
Latent Heat [J/kg K] 257,867 
Reciprocal of Liquid viscosity [MPa-1sec-1] 1.5x108

 

 

 

 

Table 6.II  CPU Benchmark results 

CODE Global Method 
for Solving BVP 

Local Integration  
Method 

Treatment of  
Liq./Mushy zone 

CPU time 
(Minutes) 

Abaqus Full NR Implicit followed by 
local Bounded NR 

Liquid Function 55 

Abaqus Full NR Implicit followed by 
Nemat-Nasser 

Liquid Function  53 

Abaqus Full NR Implicit followed by 
local Bounded NR 

Radial Return 5.6 

Abaqus  Full NR Implicit followed by 
full NR (CREEP) 

Radial Return or  
Liquid Function 

Failed 

Abaqus Full NR Explicit (CREEP) Liquid Function 185 
CON2D Operator Splitting  

(Initial Strain) 
Implicit followed by 
local Bounded NR 

Liquid Function 6 

CON2D Operator Splitting  
(Initial Strain) 

Implicit followed by 
Nemat-Nasser 

Liquid Function 5.9 
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Chapter 7. Coupled Thermal Stress Analysis 
 

 
 
Coupled thermal-stress analysis is needed when the stress analysis is dependant on the 

temperature distribution and the temperature distribution depends on the stress solution. Thermal 

stresses always depend directly on the temperature distribution obtained from transient heat 

transfer analysis through thermal strains (equations).  The heat transfer model does not usually 

depend on the force equilibrium equation since the mechanical dissipation energy is negligible. If 

spatial and temporal distribution of thermal flux data leaving the shell is accurate, for example 

from plant measurements; than this fully uncoupled approach yields satisfactory results.  

However, if thermal flux data is not available, then variable contact conditions exist between the 

strand and the mold where the heat is conducted between surfaces depends strongly on the 

distance separating the surfaces. Shrinkage of the shell will increase the thermal resistance across 

the gap and lead to hot and weak spots on the shell. This interdependence of the gap size and the 

thermal resistance requires coupling between the heat transfer and stress models solutions since 

as the gap is unknown in prior, the heat resistance in also unknown.  

In this chapter, the UMAT is improved to enable thermo-mechanical coupling. The simple slice 

domain from chapter 6 is used one more time for qualitative validation of coupled results. The 

coupled thermo-mechanical model developed in this chapter along with Abaqus contact 

capabilities is than applied in the next two chapters to the two casting processes with thermo-

mechanical coupling due to contact with the mold wall. 
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7.1 Modeling Thermo-Mechanical Coupling with Abaqus and UMAT 

 

Abaqus provides two choices to conduct coupled thermo-stress analysis with its *COUPLED 

TEMPERATURE-DISPLACEMENT procedure, either fully coupled analysis, or incrementally 

coupled where each increment is solved for temperature distribution first and then for stress. The 

first approach was found to be insufficiently robust and expensive for our highly nonlinear 

solidification phenomena, so a second approach with incrementally coupled analysis was 

adopted and used throughout this work. Abaqus distinguished incremental coupled from the fully 

coupled analysis via the key words *SOLUTION TECHNIQUE, TYPE=SEPARATED. 

Newton’s Method is again used to solve the nonlinear system in the following matrix 

representation of the fully coupled equations in eq. (102). 

 

uu uT u

Tu TT T

∆⎡ ⎤ ⎧ ⎫⎧ ⎫
=⎨ ⎬ ⎨⎢ ⎥ ∆⎩ ⎭ ⎩ ⎭⎣ ⎦

k k Ru
k k RT ⎬          (102) 

 

Where and are the respective corrections to the incremental displacements and 

temperature, k

∆u ∆T

ij are submatrices of the fully coupled global stiffness matrix, and Ru and RT are 

the mechanical and thermal residual vectors respectively. Often solving this system requires a 

costly unsymmetric solver scheme which is additional factor of at least two [80].  

In the case of incrementally coupled analysis, the off-diagonal components in submatrices kuT 

and kTu , are small compared to the components in the diagonal submatrices kTT and kuu so less 

costly solution may be obtained by setting the off-diagonal matrices to zero so that an 

approximate set of equations is obtained in equation (103): 
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uu u

TT T

∆⎡ ⎤ ⎧⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥ ∆⎩ ⎭⎣ ⎦ ⎩

k 0 Ru
0 k RT

⎫

⎭
         (103) 

 

Even though Abaqus still uses the coupled procedure with coupled elements and coupled dofs, as 

a result of this approximation,  the thermal and mechanical equations can be solved with 

significantly less CPU time using the symmetric solver for each increment. This is similar to the 

step-wise coupling in CON2D [3,4,8] where thermal and mechanical equations are solved 

separately for each increment (step).  

Abaqus provides a rich library of 2D and 3D coupled temperature-displacement elements. 

Besides having coupled procedure and coupled elements, all other mechanical and thermal 

boundary and initial conditions as well as temperature dependant material properties from 

previous separate transient heat transfer and quasi-static input decks need to be merged. An 

existing user subroutine UMAT needs to be reconfigured for coupled analysis, and a new user 

subroutine called GAPCON needs to be coded to define the conductance between the mold and 

shell contact surfaces. 

Along with mechanical consistent tangent operator (CTO) described in sections 3.6 and 4.3, the 

CTO  with respect to temperature needs to be derived accurately to provide a fast convergence 

for coupled analysis, even when increment-wise coupling is used.  Taking (46) and (47), Lush 

[62] in his work has represented the equation (44) as: 

 

*'t t
ijt t *t t t t t t t t

ij ij ie *t t

36 t f (T , , ,%C)
2

+∆
+∆ +∆ +∆ +∆ +∆

+∆

σ
σ = σ − µ∆ σ ε

σ
                                          (104) 
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This is a convenient form for deriving CTO with respect to temperature. The above equation is 

differentiated with respect to temperature in (105) 

 

t t *' t t
ij ij
t t *t t

f3 t
T T

+∆ +∆

+∆ +∆

∂σ σ ∂
= − µ∆

∂ σ ∂
                                                                                            (105) 

 

Due to the complex nature of equation (96), the term f / T∂ ∂ is found by forward finite difference 

in (106). 

 

t t t

t t t

f f f
T T T

+∆

+∆

∂ −
=

∂ −
           (106) 

  

A separate Abaqus subroutine GAPCON [1] is coded adapting the calculations from CON2D  

[3,4,5,6] which models heat transfer across the interfacial gap governing the heat flux leaving the 

steel to enter the mold. The GAPCON fortran code is given in the Appendix.  

The Abaqus main code is providing GAPCON with a calculated gap – a separation distance 

between surfaces in contact for each contact node at every increment. The thin layer of mold 

powder film, which is used as a lubricant to alleviate friction between mold and strand, is present 

in the gap. The heat transfer resistor model from Fig. 7.1, consisting of a radiation and four 

conduction terms, is used to calculate total interfacial heat transfer coefficient hT. 

 

T r
T

1h h
R

= + ad      (107) 
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Radiation heat transfer coefficient  is calculated from equation (108) radh

 

( )(
8

2 2
rad shell mold shell mold

m s

5.67*10h T T T1 1 1

−

= +
+ −

ε ε

)T+          (108) 

 

Where  are emissivities of the mold and shell surface, and Tm s 0.8ε = ε = shell and Tmold are their 

current temperatures. The conduction resistor, RT,  given in equations (107) and (108) consists of 

four terms. The first term, 1/ hmold, is the contact resistance between mold wall surface and the 

powder film. The contact heat transfer coefficient hmold ranges between 2500 W/m2 and 7500 

W/m2 [49,42].  The second resistance, dair/kair, is conduction through the air gap whose 

conduction is kair=0.06 W/mK, and the thickness of air gap, dair, is determined by mechanical 

contact analysis[49]. The third resistance, dpow/ kpow, is conduction through the powder film with 

a thermal conductivity,  kpow=1 W/mK.  Calculations of powder film thickness, dpow, are adapted 

from a CON1D model [7] as a function of the distance bellow the meniscus.  The final term, 1/ 

hshell,  is the contact resistance between powder film and the strand, where shell contact heat 

transfer hshell coefficient depends greatly on temperature, due to large change in viscosity of the 

powder film over the temperature range of strand surface [49]. The temperature dependency of 

hshell is given in table 7.I. 

 

powair
T

mold air pow shell

dd1R
h k k h

= + + +
1         (109) 
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Finally the heat flux across the interfacial gap flux between the mold wall and steel surface is 
calculated from Eq. (110) 
 
 

("
gap T shell moldq h T T= − − )          (110) 

 
where minus sign is given since heat is leaving shell surface. 
 
 
 
 
7.2 Abaqus Coupled Model Verification 

 

Since the solidifying slice model from chapters 5 and 6 has a very well defined thermal flux 

boundary data and has no contact modeled, the uncoupled approach works well for it. Also this 

model has been rigorously validated against analytical and CON2D results.  

Because this model represents the center of the shell, which contacts the mold at all times, 

contact does not need to be modeled.  This model thus can serve as an excellent starting 

validation model for Abaqus coupled heat transfer and stress analysis that works in conjunction 

with extended UMAT accommodating coupling. The 2D models of wedge and beam blank that 

follow in next chapters depend greatly on contact with the mold wall, however, so have contact 

features added to the coupled models. 

Instead of 2 separate input decks, one for transient heat transfer and one for stress, a single input 

deck is present which  calculates temperature and mechanical (displacement, strain, and stress) 

results for every time increment. Coupled and uncoupled temperature and stress results are 

plotted for 2 times along the solidifying slice on figures 7.2 and 7.3.  

As expected the results are virtually identical, a clear sign that the extended UMAT works 

properly along with Abaqus increment-wise coupling. 
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Total CPU time for the coupled analysis was larger than that for the combined uncoupled heat 

transfer and stress analysis. It took ~40 minutes to complete the coupled model on IBM p690 

versus 25 minutes for heat transfer followed by 3 minutes for stress analysis on the same 

computing platform.  

The 2D coupled models of wedge and beam blank that follow in the next chapters will have 

many more dofs along with contact features enabled that will largely increase the numerical 

complexity of these calculations, and further emphasize the need for large modern parallel 

computing platforms.  

 

7.3 Figure and Tables  

 

              Figure 7.1 Heat resistor model 
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Figure 7.2 Abaqus coupled and uncoupled temperature slice distributions 
 

 

 

Figure 7.3 Abaqus Coupled and Uncoupled Stress Slice Distributions  
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Table 7.I Temperature dependence of hshell [49] 

 
 

Temperature, oC hshell, W/m2K 

1030 1000 

1150 2000 

1511 10,000 

1530 20,000 
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Chapter 8.  2D Model Validation: Billet Continuous Casting 

 

In previous study [3,8], a transient, thermal-elastic-visco-plastic finite element code, has been 

developed to follow the thermal and mechanical behavior of a section of the solidifying steel 

shell, as it moves down the mold at the casting speed. It is applied here to simulate temperature, 

stress, strain and deformation in a 2D section of a continuous casting billet for the same 

conditions used in the previous simulation in the mold. Having CON2D temperature and stress 

contour results available from this work yields a great opportunity to quantitatively verify our 

new coupled Abaqus model along with its contact features by modeling this real world complex 

2D phenomenon.  

 

8.1 CON2D Model of Billet Continuous Casting  

 

The modeling domain for CON2D is a L-shaped region in one quarter of a transverse 120 mm 

square section from continuous casting steel billet assuming symmetrical temperature and stress 

distributions about the billet center lines, as shown in Figures 8.1 and 8.2. Generalized plane 

strain condition from the section 4.4 is enforced in the casting (Z) direction. 

While the heat transfer and mechanical FE implementations in CON2D are briefly explained in 

the sections 3.2 and 3.6, the details about its step-wise coupling and its simple but efficient 

contact algorithm can be found somewhere else [8]. CON2D has a special internal boundary 

condition algorithm which tracks the position of the solidifying front and applies the ferrostatic 

pressure to newly solidified material points as an internal load that pushes the shell toward the 

mold wall. The ferrostatic pressure, Fp, is calculated by equation (111). 
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pF g= ρ z                                                                                                                                                 (111)  

 

Where  is density, g=9.81m/sρ 2 gravitation acceleration, and z is a current distance below the 

meniscus, which can be easily calculated from a current time bellow meniscus and casting 

velocity. 

The mold taper has the task to partly compensate for the shell shrinkage yielding good contact 

between strand shell and copper wall. By describing the displacements of the mold contact 

surface, the mold taper is taken into account. This displacement for linear taper, dtaper, can be 

calculated as: 

 

taper c mold
(%taper / m) Wd

100 2
= v t          (112) 

 

where W, vc, and tmold are the mold width, casting speed, and the time that domain spends in the 

mold or the time below the meniscus while (%taper/m) is the percentage of taper per meter of 

mold length. 

The strand material for both models in this chapter is a mild carbon steel 0.27% C, with the 

identical temperature-dependant mechanical and thermal properties along with the Kozlowski III 

constitutive model from previous chapters. The initial temperature of the strand is 1540 C, while 

the initial temperature of the mold is 150 C.  
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8.2 Abaqus Model of Billet Continuous Casting 

ation 

efinition, that a linear combination of nodal displacement components is equal to zero, ie: 

 

u or u u 0= − =      (113) 

ell, the temperature history of the mold hot surface was imposed to all 

 

Instead of L-Shape used with CON2D, a 1/8 of a transverse 120 mm section (or ½ of L-Shape) 

from continuous casting steel billet is modeled with Abaqus, a domain so called a wedge, given 

in Fig. 8.3. Similarly to L-shape the steel is not modeled/simulated over the entire area, since 

only a small part will solidify. A boundary condition of a symmetry line of an L-Shape 

represents no movement allowed normal to the symmetry line. This is imposed by using Abaqus 

*Equation option [1] to enter linear multi-point constrains in the form of an equation to all nodes 

belonging to the symmetry line. A linear multi-point constraint requires that u1 and u2 

displacement components be equal for all symmetry line nodes, or in terms of *Equ

d

symm _ node _ set symm _ node _ set symm _ node _ set symm _ node _ set
1 2 1 2u

 

The copper mold is represented with a much coarser mesh with linear elastic material properties. 

The temperature history of the mold hot and cold surfaces are taken from the previous work [8] 

in Fig 8.4. Since the goal of this analysis is to validate the mechanical and thermal behavior of 

the 2-D solidifying sh

mold domain nodes.  

Each potential mechanical contact in Abaqus is defined in terms of a “slave” and master 

surfaces. The nodes from a slave surface are constrained not to penetrate into the master surface; 

however the nodes of the master surface can, in principle, penetrate into the slave surface, Fig 

8.5. Generally, the master surface should be chosen as the surface of the stiffer body or as the 
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surface with the coarser mesh. The clear choice in this case is that the master surface should be 

mold and the slave surface is strand.  The default hard contact in Abaqus is defined when 

separated surface come in contact when the clearance between them reduces to zero and any 

contact pressure can be transmitted. The surfaces separate if the contact pressure reduces to zero 

Fig. 8.6  In this simulation, the slave (strand) surface is very soft (it is in liquid state) in the 

beginning and Abaqus is recommending its softened contact instead, Fig 8.7, which indeed 

turned out to be a much more robust and efficient. The key word in Abaqus for softened contact 

is *SURFACE BEHAVIOR, PRESSURE-OVERCLOSURE=EXPONENTIAL. The softened 

contact pressure-overclosure relationship has an exponential form defined by two parameters c0 

and p0. In this relationship the surface begin to transmit contact pressure once the clearance 

between them reduces to c0. The contact pressure transmitted between the surfaces then increases 

exponentially as the clearance continues to diminish. Contact pressure at zero clearance is p0. 

Abaqus is recommending a small fraction of a typical slave element size for c0 and typical 

pressure value transmitted for p0, so c0=10-5 and p0=105 values are adopted in this work. In 

addition to softened contact, automatic contact stabilization is added which adds a very small 

amount of viscous damping to contact nodes and helps eliminating a rigid body motion, which is 

ical

present in early times of simulation before the contact is fully established.  

The friction between surfaces in contact is modeled by using the Abaqus native Coulomb friction 

model. The strand and mold contacting surfaces can carry shear stress up to a certain magnitude 

across their interface before they start sliding relative to one another; this state is know as 

sticking. The Coulomb friction model defines this crit  shear stress critτ , at which sliding of 

the surfaces starts as a fraction of the contact pressure en in the 

quation (114).  

contp , between the surfaces as giv

e
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= µ             (114) 

re cpu expensive 

ures as well as thermal properties specific to continuous casting are explained in the 

orked fine. It was found that delayed time to allow 3 rows of 

elements to solidify was ~2 sec. 

crit frict contpτ

 

The fraction frictµ  is known as the coefficient of friction and a relatively small value of 0.1 is 

chosen in all 2D and 3D models in this work since friction between contacting strand and mold 

surfaces is alleviated by the powder film. In case of higher than 0.2 friction coefficient, the 

ansymmetric solver algorithm is necessary which is at least twice as much mo

than the default symmetric solver. Friction is not modeled in the CON2D code. 

The thermal contact interactions are modeled by means of an external subroutine GAPCON, 

whose feat

chapter 7. 

Ferrostatic pressure is applied through the use of another external user subroutine DLOAD. It is 

a simple linear function of the distance bellow the meniscus Eq. (111), which is in turn is a linear 

function of time with given casting velocity.  Applying ferrostatic pressure to the outer liquid 

free surface did not work and generated all kinds of convergence problems. This is 

understandable since liquid elements have a very small stiffness with elastic-perfectly plastic 

constitutive law with very low yield stress and an application of external load directly on them 

have produced large uncontrolled motions.  Since there is no easy way in Abaqus to apply 

ferrostatic pressure to newly solidified material points, it is found, with trail and error, that 

delayed application of DLOAD to the third row (counting from the contact surface) of 

completely solidified elements w
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Mold surface (wall) position that incorporates taper of 0.75%/m and a mold thermal distortion is 

available among CON2D results, Fig 8.8, and is being curve fitted in a user subroutine DISP and 

enforced for all Abaqus mold contact surface nodes. 

The pre-processing with FE mesh generation is originally performed with MSC Patran 2001 

[111]. Abaqus native CAE 5.5 [1] pre-processor is also tested later. While Patran pre-processing 

capabilities are very well known for years and generally applicable to many other FE software, 

Abaqus/CAE is a relatively new tool created for Abaqus software only. Abaqus/CAE seems to 

be slightly easier to use, and produced less convergence troubles with Abaqus main software 

(solvers). The FE mesh consist of 7686 coupled generalized plane strain hybrid elements with 

15986 nodes for the total of 31,000 dofs. The element size for strand domain varies from 0.15 

mm close to the contact surface to 0.4 mm at the free liquid surface.  The mold has much coarser 

mesh. The hybrid element implementation is recommended for excessive plastic straining [80], 

and indeed has created much less convergence problems in the “volatile” perfectly-plastic 

liquid/mushy zone. The downside of hybrid elements is that they have an extra pressure dof per 

element, which means more cpu time for each global solution iteration.  

The whole simulation was run for 21 sec bellow meniscus, which corresponds to a 0.87 m long 

mold with given the casting speed of 2.5 m/min. It took Abaqus 6.5-5 threaded direct solver 

between 20 and 25 hours to complete a 21 sec simulation on NCSA Intel linux Xeon cluster with 

3.2 Ghz. In average it took Abaqus global NR method 4 iterations to achieve global convergence, 

though there were periods when even 12 iterations were exceeded in some critical early periods 

and Abaqus has to cut back on the increment size. The increment sizes varied from 10-4 sec. to 

0.01 sec. towards the end of the simulation.  
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C Li at al. [8] is reporting 24 hours cpu time with CON2D and L-shape on his 1GHz PC with 

similar number of nodes and elements, but CON2D approach, which avoids equilibrium 

iterations on a global level, instead can be prone to some stress oscillations [50].  

 

8.3 2D Billet Results and Comments 

 

Figure 8.9 shows the deformed mesh at the Mold Exit for the ABAQUS simulation.  The shell 

moves away from the mold most at the corner area, which is an area with the lowest 

temperatures where the effect of shrinkage due to thermal contraction is strongest. The lower 

part, far away from the corner, stays in touch with the mold. Temperature contours from Abaqus 

and CON2D are given on Fig. 8.10 and 8.11 respectively. Temperature drops toward the corner 

due to the 2D heat transfer effect in this region. A very good quantitative match up between 

temperature contour lines can be observed, though codes are using slightly different contour line 

values. Unfortunately there are currently no capabilities in Abaqus postprocessor to enforce 

specific values for contour lines, and Abaqus/CAE is rather choosing them arbitrary based on 

number of contour intervals and maximum and minimum values.  

The stress contours at mold exit are given on Fig. 8.12 and 8.13. C Li al at with CON2D [8] 

reports “hoop stress” contours, which consist of stress in x direction within the horizontal portion 

of the domain and the y direction stress within the vertical portion. In the single region of the 

Abaqus domain, the hoop stress is simply the y direction stress. Considering that two codes are 

using different contact and coupling algorithms and that the stress results are even more 

burdened with different stress values and colors, a closer look reveals that the prominent tensile 

and compressive stress areas are situated in approximately the same places.  The lowest values of 
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hoop stress of -8 MPa are found at the shell contact area bellow the corner where the “cold” part 

of the solidified shell is compressed due to the faster surface shrinkage. The large island of 

tensile stress whose peak reaches ~ 4 MPa is found on both contours at the warmest part of 

newly solidified shell which is under tensile conditions. This agrees with the analytical and 

numerical stress solutions from previous chapters where surface shell compression and sub-

surface shell tension close to solidification front are revealed. There are strong spikes of both 

tensile and compressive stresses reported by Abaqus and concentrated to the small peak-corner 

area zoomed in the Fig 8.14. It is likely that these extreme stress values are produced by some 

numerical error as similar spikes of stress are observed in CON2D. Considering that CON2D 

results are often validated against plant measurements and experiments [8, 3 9], and given such a 

reasonable match up of temperature and stress results between the codes; it is clear that Abaqus 

with UMAT can be used relatively easily in future as another tool to accurately investigate many 

other 2D solidification applications that require coupling like: longitudinal and transversal crack 

formation with appropriate failure mechanisms, parameters studies of different casting speeds 

and tapers, bulging bellow mold, effect of geometry of mold and its design, and many other 

phenomena under a wide variety of casting geometries. One such coupled thermo-mechanical 

analysis of a challenging beam blank casting geometry is performed in the next chapter.  
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8.4 Figures and Tables  

 

Figure 8.1 Schematic of the CON2D modeling domain [8] 

 

 

Figure 8.2 CON2D FE domain [3]  
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Figure 8.3 Abaqus modeling domain 

 

Figure 8.4 Mold wall temperature profiles from plant measurements [8], hot face temperature 

profile is imposed on the mold part of Abaqus model. 
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Figure 8.5 Abaqus slave-master contact definitions [1] 
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Fig. 8.6 Default (hard) contact in Abaqus [1] 
 
 
 
 

 
Fig. 8.7.  Softened exponential contact in Abaqus [1] 
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Fig. 8.8 Mold wall and shell surface position – CON2D result data [8], mold wall data is 

imposed on all Abaqus mold contact nodes to enforce 0.75%/m taper 

 
 
Fig 8.9  Abaqus deformed shape at mold exit 
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Fig. 8.10 Abaqus temperature contour results at mold exit  
 

 
 
Fig. 8.11  CON2D temperature contour results at mold exit [8] 
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Fig. 8.12 Abaqus stress contour results at mold exit 
 

 
Fig. 8.13 CON2D stress contour results at mold exit [8] 
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Fig. 8.14 Abaqus stress results zoomed at corner. 
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Table 8.I  The billet simulation conditions 

________________________________________________________________________ 

Casting strand [mm]      120 x 120 

Working Mold length [mm]      870 

Taper (wrt to W=90mm) [%/m]    0.75 

Softened Contact Coefficients: c0
 and p0    10-5, 105

Mold Contact Resistance Heat Coefficient [W/m2/K] 7500 

Friction Coefficient Mold/Shell    0.1 

Casting speed [m/min]     2.5 

Steel grade [%C]      0.27 

Initial temperature strand [C]     1540  

Initial temperature mold [C]     150 

Liquidus temperature [C]     1500.7 

Solidus temperature [C]     1411.79 

Time to apply ferrost. press. [sec.]    2.4 

Number of elements      7686 

Number of nodes      15968 

Total number of dofs      31860 
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Chapter 9. Thermo-Mechanical Model of Beam Blank Casting  

 

Beam blank casting is used in production of H and U beams as an alternative to conventional 

blooms. Economic advantages of beam blank casting are mainly due to lower rolling costs 

coming for its specific net shape where less mill rolling is necessary to achieve desired finished 

cross section. Beam blank casting has also higher productivity are requires less energy than billet 

casting. In recent years, the process has been optimized through careful integration of electro-

mechanical sensors, computer-control, and production planning to provide a highly-automated 

system designed for optimal productivity [112,113]. The caster has to be directly coupled to the 

rolling mill in order to gain the most benefits.   The beam blank caster has a complex geometry, 

called a “dog-bone” type. All failure mechanisms mentioned in Chapter 1 are present in beam 

blank casting, but its complex shape produces additional difficulty in numerical modeling. 

Consequently there are only a few numerical models of beam blank casting solidification 

reported [18,112]. Since Abaqus pre processing capabilities can effectively mesh this complex 

geometry while UMAT is providing accurate and efficient integration of viscoplastic laws, the 

Abaqus coupled thermo-mechanical model from Chapter 4 is a good tool for beam blank 

solidification modeling. Complex interactions between mold and solidifying shell will be again 

handled by the Abaqus mechanical and thermal contact capabilities.  

 

9.1 Finite Element Model  

 

Figure 9.1 shows a schematic of a cross section of the beam blank caster normal to the casting 

direction. The dimensions of the beam blank caster modeled in this work are 555mm (mold 
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width) by 420mm (flange thickness) by 90 mm, which is the thickness of the middle (narrow 

web) section of the mold.  These values were taken at the height of the meniscus in the mold. 

The real mold has cooling channels at the outer edge of the mold. The generalized plane strain 

finite element domain used is this work is referred to here as a “snake” shape. It encompasses ¼ 

of the section with a slice of a simplified mold wall (neglecting the internal water slots) and the 

corresponding “stripe” of the strand adjacent to the mold wall, that is wide enough to allow 

solidification of expected shell thickens everywhere. This avoids expensive computation in the 

large, uninteresting liquid domain and contributes to significant savings in cpu time and also to 

the robustness of the model.   It is similar to the cuts in liquid domain which are performed on 

the ¼ of the billet cross section in the last chapter yielding the L-Shape and Wedge-Shape 

models.  This style of domain has the further advantage of allowing enlargement of the internal 

liquid domain (which would in reality become filled with new liquid metal), that would not be 

possible in a full domain.   

The Kozlowski III model from Chapter 3 is used again as a constitutive law for a mild carbon 

steel grade 0.27C % whose temperature dependant thermo-mechanical material properties are 

listed in previous chapters. Copper is used as a mold material. All thermal and contact properties 

defined in section 7.1 with hmold=3000 W/m2K  are enforced through the GAPCON subroutine 

along with softened mechanical contact coefficients c0=5*10-5 and p0=105  from Fig. 8.7, and 

friction with the coefficient of friction set to 0.1.  The FE domain with symmetric mechanical 

BC-s is given on a figure 9.2. Details of water channels are not modeled.  Instead, the outer 

surface of the domain is tangential to the circular water channels, as shown in Fig. 9.1 The 

average convection coefficient of h=30,000 W/m2K transferring the heat from this surface to the 

cooling water with 30 C.  The structured mesh has 7500, 4-node generalized plane hybrid 
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elements with average size of 1 mm in strand, and 5 mm in mold. The total number of dofs 

counting Lagrangian multipliers for contact and extra pressure dof/element due to hybrid 

implementation is over 34,000.  

By describing the displacements of the mold contact surface with respect to the time bellow 

meniscus, the mold taper of 1%/m is taken into account according to the equation (112) with 

respect to W=90 mm, which is the mold thickness in the middle (narrow) section of the beam 

mold.  The casting speed vc is  0.6 m/min. Thus, the angle of the slanted mold wall is constant.  

Since heat transfer through the mold is calculated in this model, the thermal distortion of the 

copper mold is also calculated.  

The linearly increasing negative distributed load for the ferrostatic pressure Eq. (111) is applied 

to the contact shell surface starting at zero time. The negative sign is chosen to model the 

direction of ferrostatic pressure, which pushes the shell towards the mold.  This approach is 

different than the one used by con2d and abaqus in chapter 8 where positive pressure pushes the 

“inner” side of the third row of solidified elements, with a delayed application time of 2.4 sec. 

Here, it rather pulls the shell towards the mold and produces less convergence problems and 

enables application of ferrostatic pressure at early times. The casting velocity is 0.6 m/min and 

therefore the time that the domain spends in the 0.45 m long mold is ~45 sec. It took Abaqus ~ 

37 hours to finish this 45-sec simulation on NCSA’s Intel Xeon linux cluster with 3.2 Ghz . 

 

9.2 Results and Comments 

 

The deformation (magnified three times) is given in Figure 9.3 for the whole domain at the mold 

exit, and it is zoomed to the flange region in Figure 9.4. Due to its geometry, the 2D heat transfer 
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effects are present in the flange region and the molten steel solidifies initially there faster, 

shrinking away from the mold wall and creating the gap. As the gap grows the heat extraction 

from the mold is more resisted by the gap thermal resistance elaborated in the chapter 7, 

eventually producing the retardation of the shell grow in the middle of the flange region. This 

can be seen at the temperature contour for the strand domain at the mold exit given in Fig. 9.5 

where the middle of the flange surface shell area is mostly warmer then the rest of the shell 

surface which stays longer in touch with the mold. The exceptions are surfaces of the flange 

corners which are still colder due to the strong presence of the 2D conduction effects there, even 

with the increased heat resistance and the drop in the heat extraction from the mold. This is 

especially case for the “sharp” right flange corner which remains the coldest point of the shell 

domain.  

The stress contour in y direction is the hoop stress for the narrow face and approximately for the 

vertical steep part of the wide face given in Fig. 9.6. It reveals expected compressive shell 

behavior at the “cold” surface and tensile stress in the warmer interior of the shell. Similar results 

were obtained for the horizontal sections of the domain whose hoop stress is in the x direction in 

Fig 9.7. These maximum hoop stress results can be used to predict the crack occurrence [42, 8].  

Four points of interest, marked A,B,C,D (Fig. 9.2),  on the shell surface were chosen for the 

history data. Point A is in the middle of the wide face (on the vertical symmetry plane BC), point 

B is in the middle of flange fillet, point C is at the left flange tip corner, and point D is at the 

right flange tip corner. The temperature history is given in Fig. 9.8 for these four points. The 

thermal flux that leaves the shell surface for these four points is given in figure 9.9. The gap 

evolution, which represents the air gap thickness between contact surfaces for these points, is 

given in figure 9.10. Points A and B stay in touch with the mold most of the time, and their flux 
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and temperature histories are fairly uniform without large jumps. Point C shrinks away at the 

fastest rate from the mold, facing rapidly increasing gap heat resistance, and having a sharp drop 

in the thermal flux between 4-6 sec. so that even the overheating can be observed at these times 

for this point. Point D at the very corner of the flange has a sharpest temperature drop at early 

times due to the 2D corner conduction effect. However, it stays closer to the narrow face of the 

mold during its shrinking and its gap is significantly smaller than for the point C resulting in a 

higher heat flux extraction than for the point C after 6 sec bellow the meniscus. This combined 

with the 2D corner cooling effect makes the point D the “coldest” point in the strand domain.  

Figure 9.11 has the shell thickness evaluation history for the above four points along with the 

surface point in the middle of the flange, equally far away from the corners. As expected the 

coldest point D has the thickest shell. While the left corner flange point C has slightly thinner 

shell than the points A and B at early times due to the sudden shrinkage, later its shell thickness 

exceeds the thickness of points A and B due to the 2D corner effect. The middle flange point also 

shrinks away from the mold, but it is far away to feel any corner effect, and it stays warmest and 

therefore its shell thickness is the thinnest.  

Figures 9.12 through 9.17 have temperature and hoop stress histories for points A, B, and the 

mid flange point at times 20 and 45 sec. They are similar to the realistic slice case profiles from 

Fig. 6.9 and 6.10 with compression on the surface and tensile stress close to solidifying front, 

except perhaps for the mid. flange point that has a very little compressive stress on the chilled 

surface due to the retarded shrinkage there.  

Figure 9.18 shows a contour plot of equivalent inelastic strain at mold exit zoomed at the flange 

area.  A corner point (D) and a subsurface, off-corner point, 16.7 mm from the corner, known for 

a strong alternating tensile/compressive inelastic strain history, are chosen and indicated in Fig. 
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9.18  Inelastic strain and temperature time histories for the corner point are given in Figures 9.19 

and 9.20. The off-corner point inelastic strain history is given in Fig. 9.21, and its temperature 

history is given in Fig. 9.22.  At 28.1s, the temperature is 1440 C, which corresponds with 0.03 

value for inelastic strain, and experiences a sharp drop in inelastic strain to -0.03.  From the 

temperature history graphs, the times when these material points are 90% or 1420.68 C, and 99% 

slid or 1411.7 C are 0.32 sec. and  0.349 sec.  for the point D , and  29.63 sec. and 30.63 sec for 

the off-corner point.. These values are then used to read the inelastic strains corresponding to 

90% and 99% solid from the Figures 9.19 and 9.21.  Total inelastic strain minus the inelastic 

strain at 90% solid , represents the inelastic strain in the solid, and is included in Figs. 9.19 and 

9.20. For the corner point, the inelastic strain for 90% solid is 6.37*10-4 , and for 99% solid the 

value was 6.50*10-4, and inelastic strain in the solid is even smaller.  For the off-corner point, the 

inelastic strain for 90% solid is -0.02970, and for 99% solid is -0.02971, and increases with time.  

The “damage strain” is the strain accumulated between 90% and 99% solid, and represents the 

most brittle material state during freezing, when liquid is still present, but when the dendrites are 

thick and preventing the surrounding liquid from compensating the strains from thermal stress, of 

solidification shrinkage.  This measure of damage can be calculated for these material points 

from this data and compared with the empirical critical value to predict hot tearing.  The results 

here indicate a damage strain of -1.*10-3% at the off-corner point and +1.3*10-3% at the corner, 

which are both very small and unlikely to hot tear.  Details of this failure criterion can be found 

elsewhere [8]. 

This simulation provides the following insights into the continuous casting process for beam 

blanks:  
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• The coupled thermo-mechanical model developed in this work is capable of evaluating 

the simultaneous development of temperature, stress, strain and deformation in a 2D 

section of a continuous casting beam blanks with complex geometry. 

• At the flange area, the taper of 1%/m wrt. to 90 mm thickness is insufficient to prevent  a 

large interfacial gap from forming.  

• The middle of the flange remains the warmest point in the domain at mold exit and has 

thinnest shell, while the neighboring right flange corner, point D, is the coldest point with 

the thickest shell. This highly uneven shell development concentrated in this small area of 

flange might cause quality problems, such as shell failures at this location.  This agrees 

with reported experimental observations in the beam blank cast strand [18]. 

• Hoop stress results are showing expected compression on the surface and tension close to 

the solidifying front, as observed in the previous solidifying slice simulations.  

• The inelastic strain in the mushy zone, accumulated over the critical time between 90% 

and 99% solid, can be extracted from these results and used with the proper fracture 

criteria to predict hot-tear cracks. 
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9.3 Figures and Tables  

 

 

 

 

 

Figure 9.1 Schematic of a cross section of a beam blank caster with FE domain  
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Fig 9.2 Thermo mechanical boundary condition applied to snake FE domain  
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Fig 9.3 Deformation at the mold exit-whole domain (magnified 3 times) 

 

Fig 9.4 Deformation detail- Flange area (magnified 3 times) 
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Fig. 9.5 Strand temperature contour at the mold exit 
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Fig. 9.6 Strand stress22 contour at the mold exit 
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Fig 9.7 Strand stress11 contour at the mold exit 
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Fig. 9.8 Temperature history for points A, B, C, D 

 

Fig. 9.9 Heat flux history for points A, B, C, D 
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Fig. 9.10 Gap evolution history for points A, B, C, D 
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Fig 9.11 Shell thickness evolution history for points A, B, C, D, and the mid flange  
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Fig. 9.12 Temperature profile through strand thickness for Point A 

 

 

Fig. 9.13 Hoop stress profile through strand thickness for Point A 
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Fig. 9.14 Temperature profile through strand thickness for Point B 

 

Fig. 9.15 Hoop stress profile through strand thickness for Point B 
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Fig. 9.16 Temperature profile through strand thickness for mid. flange point 

 

 

Fig. 9.17 Hoop stress profile through strand thickness for mid. flange point 
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Fig. 9.18 Inelastic strain contour for flange area at mold exit 
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Fig. 9.19 Inelastic strain history for corner (Point D) at early times  

 

Fig. 9.20 Temperature history for corner (Point D) at early times 
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Fig. 9.21 Inelastic strain history for the off-corner point. 

 

Fig 9.22 Temperature history for the off-corner point 
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Table 9.I  The beam blank simulation conditions 

 

________________________________________________________________________ 

Casting strand [mm]       555 x 420 x 90 

Working Mold length [mm]      450 

Taper (wrt to W=90mm) [%/m]     1 

Softened Contact Coefficients: c0
 and p0     5*10-5, 105

Mold Contact Resistance Heat Coefficient, hmold [W/m2/K] 3000 

Friction Coefficient (Mold/Shell)     0.1 

Casting speed [m/min]      0.6 

Steel grade [%C]       0.27 

Initial temperature strand [C]      1540  

Initial temperature mold [C]      150 

Liquidus temperature [C]      1500.7 

Solidus temperature [C]      1411.79 

Water side heat transfer coefficient [W/m2K]   30000 

Cooling water temperature [C]     30 

Time to apply ferrost. pressure [sec.]     3 

Number of elements       8805 

Number of nodes       18438 

Total number of dofs       35512 
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Chapter 10. Thermo-Mechanical Model of Thin Slab Casting 

 

Thin slab casting was first introduced in 1986 in Nucor Steel’s plant in Crawfordsville Indiana. 

This technology features casting of about 50-mm thick slabs, which are 1/3 thinner than 

convectional cold cast rolled slab. The economic advantages of thin slab casting technology 

make them significantly more attractive to build than the large expensive conventional steel 

plants that must produce 4-5 million tones of steel per year to be profitable [114]. Moreover, 

when thin slab casting is combined with hot direct rolling the final coiled products can be 

removed from the mill within 20 minutes after leaving the caster, while with conventional 

“thick” slab casting the slabs can be held for more than 20 hours before being reheated, and 

reheating itself requires additional time and  energy.  

Thermo-mechanical modeling of thin slab casting has received much less attention than 

conventional thick casting. The main additional modeling complication comes from the 

computational difficulty faced when modeling transient geometry of the funnel shape as the 

strand domain travels in the mold. A. Cristallini et al. [115] developed a two-dimensional 

transient thermal and stress analysis assuming elastic-plastic behavior of shell to design new 

funnel geometry. Park et al. [116] implemented a 2D generalized plain strain approach with 

elastic-viscoplastic constitutive model by imposing a severe taper in the funnel area to emulate 

the slope of the funnel that pushes the strand. While this approach was able to predict 

temperature and transverse stress results, the axial stresses in the casting direction, which likely 

are responsible for internal transverse cracks, can only be calculated properly with a 3D model 

that has some thickness in the casting direction. In the final part of this thesis, a novel 3D 

thermo-mechanical analysis of a thin slab casting is performed with our Abaqus model with 
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UMAT on the latest parallel computing platforms. It was observed in chapter 6 that uncoupled 

analysis consisting of transient heat transfer followed by thermo-stress analysis requires 5-10 

times less total cpu time than a corresponding coupled thermo-mechanical analysis. Since a 

proper mesh refined enough to capture solidification phenomena in a 3D world consists of 

300,000 to 500,000 dofs, it is a natural choice to perform uncoupled analysis in this case. 

However, with the constant increase in the computational speed of the newest hardware and 

possible improvements in the efficiency and stability of the software and numerical parallel 

algorithms, the coupled 3D analysis of continuous casting will probably follow in years to come. 

 

10. 1  Geometry and FE Model 

 

Fig. 10.1 shows a schematic of thin slab casting [117]. Aside from a thinner mold width than 

conventional thick caster, one additional significant difference is a funnel shape section across its 

central upper part. This design provides sufficient space for the introduction of a large size 

bifurcated submerged entry nozzle. The rest of the wide mold faces out of funnel region stays 

straight and parallel like any other rectangular mold. The funnel section narrows down gradually 

into a rectangular cross section which gives the final shape to the slab casts. Figure 10.2 has 

geometry of a thin mold used in this work.  Generally, the shape of funnel can be characterized 

by the width and depth of funnel. The total width of the funnel is 750 mm consisting of two 

bends. The inside concave funnel bend is 400 mm wide where there is an inflection point that 

changes funnel curvature from concave to convex., the rest of the funnel is a convex outside 

bend. At the lower part of mold the wide faces at the funnel region becomes almost parallel, ie. 

the funnel depth tapers away linearly from 40 mm at the top of the mold to 6 mm at 900 mm 

 127



down from the mold top. The meniscus plane is 100 mm lower than the mold top so that working 

mold length is 1100 mm. The slab thickness varies for the center of the funnel from 170 mm at 

mold top to 108 mm at mold exit, for the concave/convex inflection point from 148 mm at mold 

top to 93.1 at mold exit, and stays the same at 90 mm for the straight part of the mold. 

Similar to the previous model ¼ of the mold and the strand in it is modeled. The liquid domain is 

highly reduced again to save cpu time and to reduce possible convergence problems in the 

volatile liquid/mushy region. Unlike any other 2D models, this FE model has a thickness of 100 

mm in the casting direction; see Fig 10.3 of the 3D FE domain viewed from the bottom of the 

mold.  The usual symmetry BC-s are enforced on the central planes normal to the wide and 

narrow faces. In addition, the symmetry BC in the axial direction z is enforced on the bottom 

surfaces of the mold and strand.  

Due to the axial movement of 3D domain in Lagrangian frame of reference, the different 

material points and nodes in axial direction have different local times. Equation (115) is used to 

calculate the local time that a material point spends in the mold. 
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where  is the thickness of 0.1 m of the domain in casting direction, is the casting velocity 

of 3.6 m/min, Z is the axial coordinate of a material point in the local coordinate system sitting 

on the top plane and traveling with the domain, and is the time of the reference plane which is 

chosen to be a bottom plane and is the time that Abaqus is passing into UMAT. In the other 

words, Eq. (115) calculates the delayed time that different material particles above the reference 

bottom plane spend immersed in the mold.  The  bottom of the domain is the first plane to enter 
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the mold. All time dependant properties like: imposed thermal flux BC, ferrostatic pressure, 

imposed displacement of mold contact nodes to emulate funnel taper, and time dependant 

constitutive law are calculated with respect to local material point time.  

The domain is meshed with 8-node linear brick elements, which experience less convergence 

problems than higher-order elements in Abaqus for contact problems. Special attention is given 

to a proper element sizes in the strand domain especially on the contact surface to accurately 

model solidification front in a 3D fixed mesh, while avoiding cost-prohibitive mesh size. The 

strand elements are biased from 1.3 mm average element size on the contact surface with the 

mold to 5 mm deep in the liquid/mushy zone. The total number of dofs in stress analysis 

including additional Lagrangian contact dofs and hybrid pressure dofs was ~430,000 for the most 

refined case. A mesh refinement study with 2 meshes has been conducted to verify that this mesh 

size is capable of reproducing a correct state of temperature and stress. A slice is formed with 

exactly the same element sizes used through the strand thickness in the 3D analysis. Then the 

coupled analysis is run with the identical properties and conditions used for a coupled slice from 

the chapter 7.  The temperature and stress profiles at 21 sec. are compared in Fig. 10.4 and 10.5 

with the results from the original coupled slice which has much more refined mesh. An excellent 

correspondence of temperature results was found. Though the stress result for a slice produced 

from a 3D mesh is not exactly matching the refined slice stress result, it is still capable of 

correctly reproducing a state of stress of a solidifying slice. 

The transient heat transfer analysis is first run for the strand domain to calculate its spatial and 

temporal temperature fields. Conductivity, specific heat, and latent heat data are used from the 

chapter 6. The thermal boundary condition at the shell surface is modeled by use of a heat flux 

which is obtained from the plant measurements [118] down the mold. This flux data is curve 
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fitted and prescribed as a function of the local time bellow meniscus in Fig. 10.6. The previous 

work from chapters 8 and 9 revealed a formation of air gaps in the mold/shell interface in the 

corner region due to 2D heat flow corner effects. Therefore in order to avoid corner overcooling, 

the heat flux profile is reduced to 60% of its nominal value. This reduction is applied linearly 

starting 20mm from the corner on both wide and narrow strand surfaces. The Fig. 10.6 has also a 

reduced flux curve history imposed to the corner. 

The result temperature file is used for a subsequent stress analysis. The mechanical contact 

between 3D surfaces of the shell and the mold wall is modeled with Abaqus softened contact 

capabilities from chapter 8. Since temperature field of the strand is already completely 

determined from the transient heat transfer analysis, no heat transfer across the interfacial gap is 

modeled. Elastic modulus, and expansion coefficient data are used from chapter 6. Viscoplastic 

constitutive law from equation (96) is implicitly integrated and solved with the local bounded 

NR procedure in UMAT from chapter 4. Elastic-perfectly plastic law from section 4.2 is used to 

model liquid/mushy zone. All previous UMAT coding has been already accommodated for the 

3D state of stress and only a minor change in the  number of state dependant variables, which are 

components of inelastic strain, has to be adjusted for 3D case in Abaqus input deck. Ferrostatic 

pressure is modeled again by means of DLOAD subroutine linearly increasing with respect to the 

local time for each material point on the shell surface pulled towards the mold wall. The funnel 

taper is modeled with the imposed displacement history to the funnel mold contact nodes. The 

total displacement is calculated from the difference between the funnel mold surface profiles at 

the top and the bottom of the mold, (see Fig 10.2), for a few points along the funnel mold 

surface. This displacement data is curve fitted with the third order polynomial to yield the x 
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directional (transverse) dependence. Finally this displacement function is linearly scaled with 

respect to the local total time bellow the meniscus. 

 

10.2 Results and Comments  

 
Results are given for three times bellow meniscus: 5 sec when the whole domain is already deep 

in the mold, 12 sec when the bottom plane of the domain is almost exiting the tapered part of the 

funnel, 15.8 sec when the shell in the funnel just went through the transition from tapered to the 

straight mold walls, and 19 sec when the domain is exiting the mold. The models with the 

coarser meshes have encountered floating exception convergence problems and could not run 

longer than 12 sec., even when the maximum time increment was limited to 0.006 sec.  The most 

refined mesh with over 430,000 dofs did not encounter these problems, and it made it to 15.8 

sec. with the max. time increment size restricted to 0.006 sec when the Abaqus solver reported 

memory problems and exited on a 32-bit NCSA’s tungsten cluster. This late simulation memory 

problem was reported to Abaqus Inc., and we were advised to re-run the whole simulation on a 

64-bit cluster with more available memory. Recently the whole simulation succeeded on an 

experimental AMD Opteron 64-bit box with dual core cpus, and the results at 19 sec. have been 

included in this work. It took more than 8 days of the wall clock time to complete this simulation 

on the Opteron box. 

A final shape of the bottom shell surface at mold exit is imposed on the corresponding initial 

shape at meniscus in Fig 10.7. It shows a correct application of mold displacement BC which is 

correctly pushing out shell in the funnel into its final shape. Fig 10.8A has a detail corner bottom 

shell surface distortion in the mold with the corner gap formed at 12 sec with temperature 

contours imposed.  Since this model does not have taper modeled, the real shell would not 
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probably form such a big gap, if the taper of the narrow face was put into the simulation. Another 

gap at the center of the wide face has quickly opened when the shell reached the mold wall 

geometry transition, and stayed opened for the rest of the analysis. Evolution of this gap viewed 

from the center section side view is sketched in Fig.10.8B. 

Temperature contours are given in Fig 10.9, 10.10, 10.11, and 10.12. Parallel isotherms normal 

to the casting direction confirm validity of the assumption used in all 2D cases that heat 

conduction in casting direction is negligible. Temperature profiles along wide bottom edge face 

for surface and 2 sub-surfaces are compiled in Fig 10.13, 10.14, 10.15 and 10.16.  Subsurface1 is 

1.73 mm bellow the shell surface; while subsurface2 is 3.4 mm bellow the shell surface. 

Complicated geometry of the funnel region does not seem to produce any unexpected 

temperature results. Most of the shell surface is still cooling uniformly with respect to the local 

time it spends in the mold except in the corner and a small spot where funnel turns into straight 

part. Even though there is a drop of heat extraction from the shell in the corner due to the 

imposed flux drop, the immediate corner area still gets moderately cooled due to the 2D heat 

flow corner effect while the rest of the corner flux drop area stay warmest in the domain with as 

much as 120 C higher temperature than the rest of the domain and immediate corner.  This is 

quantitatively very similar to the temperature corner profile from 2D coupled simulations from 

earlier chapters.  Early attempts to run heat transfer analysis without a flux corner drop have 

produced severe overcooling of the corner area with as low as 400C, which is not real. Higher 

temperature subsurface profiles are mostly parallel to the surface profile indicating expected 

linear increase of the temperature through the shell thickness. Shell thickness evolution for 

bottom surface is given in Fig. 10.17. Most of wide face reaches ~9mm shell thickness at the 

mold, while corner has a thicker shell of 16 mm at mold exit.  
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There are three major contributions to the generation of stress in this model. Besides usual 

thermo-visco-plastic stresses coming from solidification due to the uneven cooling through shell 

thickness, there is a strong pure mechanical component coming from the funnel geometry 

pushing and bending solidified shell. Often mechanical component is dominant in funnel region 

and stress sign is opposite of expected compression on shell surface and subsurface tension 

common for pure solidification of a straight shell.  

Transverse stress contour  are given in Figs. 10.18, 10.19, 10.20, and 10.21 at 5, 12, 15.8, and 

19 sec. Corresponding transverse stress distributions graphs along the wide face bottom edge for 

the same surface and two subsurface paths are given in Figs 10.22, 10.23, 10.24, and 10.25. They 

reveal an interesting transverse stress distribution. Most of the wide face, and especially in the 

funnel region, is in the state of tensile stress on the surface early in the simulation at 5 sec. This 

can be explained by the significant deformation of the shell as it gets pushed by the funnel and 

straightened in the funnel region increasing its length. The shell transverse elongation is even 

larger than its corresponding shrinkage due to the cooling, and the tension occurs on the shell 

surface. This is opposite of usual compression on the shell surface for the parallel molds without 

funnel. At later time of 12 sec. situation changes and most of wide face bottom edge is in 

compression except the funnel outer bend region that stays in the tensile state. Between 13.5 and 

17 sec. most of the funnel shell surface goes into another period of tension, which is even 

stronger than at early times. That is the time when the shell in the funnel goes through the funnel 

mold wall transition region from the tapered to the straight.  Finally, when the whole domain is 

deep in the lower part of the mold at 19 sec, surface compression dominates everywhere again 

except in the small area around the center of the funnel where some residual tensile surface stress 

is still present. Generally subsurface stress lines are showing usual tensile stress close to 

xσ
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solidification front when compression is on the surface, but opposite is also true for the most of 

the surface in tension. 

Axial (casting direction) stress contours zσ  are given on Fig 10.26, 10.27, 10.28 and 10.29. 

Axial stress distribution along the bottom funnel edge for a shell surface and the two subsurface 

at 5, 12, and 15.8 sec are given on Figs 10.30, 10.31, 10.32 and 10.33. Axial stresses 

distributions and histories are quantitatively similar to the transverse stresses and characterized 

again by the two stress reversals. At 5 sec high tensile stress areas are recorded close to 

symmetry planes, while in the corner area both tensile and compressive stresses are present next 

to each other due to the strong thermal strains coming from temperature corner variations. Most 

of shell surface is in compression due to its axial shrinkage at 12 sec except a tiny tensile strip at 

the corner edge At the time of 15.8 sec. surface tension is present in most of the funnel region 

which is left from the axial unbending that shell undergoes after transition from tapered to 

straight part of the funnel mold wall. At the mold exit, surface compression dominates again. 

Transverse and axial stress histories are given for the three interesting points on the bottom 

surface edge. Fig. 10.34 has stress histories for a center funnel point, Fig. 10.35 has stress 

histories for a point 0.3 m from center which is in the funnel outer bend region known for a 

strong showing of tensile stress from contours, and Fig. 10.36 has stress histories for a point 0.58 

m from a center in a straight part of wide face. The stress histories for two funnel points are 

nicely depicting the two periods of stress reversals that solidifying shell in the funnel part of 

mold goes through, and they are common for both transverse and axial components of stress. The 

surface point history of the point in the straight part of funnel feels very little of a stress reversal 

from the funnel and mostly behaves in an expected surface compression fashion observed from 

the previous chapters. 
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To summarize: using a 3-dimensional uncoupled thermo-mechanical finite element model, the 

thermo-mechanical behavior of strand in a thin funnel mold has been analyzed. The transient 

heat transfer analysis with the realistic heat flux BC was run first, followed by the mechanical 

analysis with 3D softened mechanical contact between the shell and the mold wall.  

This simulation provides the following insights into the continuous casting process for funnel 

thin slabs: 

• This model indicates a significant interfacial gap develops at and near the corner, on the 

narrow face, owing to the lack of mold taper. Realistic taper data is necessary to be included 

in the future models to compensate for the large gap formation.  Another gap at the center of 

the wide face opens when the shell goes through the funnel mold wall transition, and stays 

open for the rest of the mold. 

• Large gradients of temperature are recorded between the corner tip and wider corner area. 

This is causing uneven shell development in the corner area, similar to beam blank, making 

the corner area prone to the shell failures.  

• Negligible temperature gradients are observed in the casting direction justifying the 

assumption used in all 2D models that the heat conduction in axial (casting) direction can be 

neglected due to the large Peclet number. 

•  Two periods of stress reversals, characterized by the surface tension and the subsurface 

compression, are revealed for both transverse and axial shell stresses in the funnel area. The 

transverse stress reversals are consistent with the findings of Park et. al. [116] who used a 2D 

generalized plane model to model thin slab casting with funnel, except that this model has 

predicted additional compressions at the two curvature transition areas.  The axial stress 

results are novel and can be used to predict internal transverse cracks. 

 135



• Even though this pioneer attempt to model 3D solidification in a complex geometry 

environment of a thin slab continuous mold with funnel turned out to be a serious 

computational task, and there is some uncertainty in the stress results due to the extremely 

complex phenomena that influences it; it clearly shows that the model developed in UMAT 

in this work is efficient enough to perform it successfully on the newest computational 

platforms.  

 

10.4 Figures and Tables  

 

Fig 10.1 3D Schematic of thin slab casting [117] 
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Fig. 10.2 Geometry of a thin slab casting mold 

 

Fig 10.3  3D Model and BC-s 

 137



 

Fig. 10.4 Mesh refinement study, temperature results 

 

 

Fig. 10.5 Mesh refinement study, stress results 
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Fig. 10.7 Initial (black: at meniscus) and final (light green: at mold exit) shell shape 3-D view 

from bottom of mold (showing inside of NF wall in solid black at right) 

 

 

 

Fig. 10.8A Detail corner bottom shell surface distortion with temperature contour imposed at 12 

sec. bellow meniscus 
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Fig. 10.8B Central gap evolution  
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Fig 10.9 Temperature contour when domain bottom is 5 sec. below meniscus 

 

Fig 10.10 Temperature contour when domain bottom is 12 sec. below meniscus 
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Fig 10.11 Temperature contour when domain bottom is 15.8 sec. below meniscus 

 

Fig 10.12 Temperature contour when domain bottom is 19 sec. below meniscus
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Fig. 10.13 Temperature profile along wide face bottom edge path at 5 sec. 

 

Fig. 10.14 Temperature profile along wide face bottom edge path at 12 sec. 
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Fig. 10.15 Temperature profile along wide face bottom edge path at 15.8 sec. 

 

Fig. 10.16 Temperature profile along wide face bottom edge path at 19. sec. 
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Fig. 10.17 Shell thickness history for bottom surface  
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. Fig. 10.18 Transverse stress contour when domain bottom is 5 sec. below meniscus 

 

Fig. 10.19 Transverse stress contour when domain bottom is 12 sec. below meniscus 
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Fig. 10.20 Transverse stress contour when domain bottom is 15.8 sec. below meniscus 

 

Fig. 10.21 Transverse stress contour when domain bottom is 19 sec. below meniscus 
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Fig. 10.22 Transverse stress profile along bottom edge wide face at 5 sec. 

 

Fig. 10.23 Transverse stress profile along bottom edge wide face at 12 sec. 
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Fig. 10.24 Transverse stress profile along bottom edge wide face at 15.8 sec. 

 

.Fig. 10.25 Transverse stress profile along bottom edge wide face at 19 sec. 
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Fig. 10.26 Axial stress contour when domain bottom is 5 sec. below meniscus 

 

Fig. 10.27 Axial stress contour when domain bottom is 12 sec. below meniscus 
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Fig. 10.28 Axial stress contour when domain bottom is 15.8 sec. below meniscus 

 

Fig. 10.29 Axial stress contour when domain bottom is 19 sec. bellow meniscus 
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Fig. 10.30 Axial stress profile along bottom edge (wf) at 5 sec. 

 

Fig. 10.31 Axial stress profile along bottom edge (wf) at 12 sec. 
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Fig. 10.32 Axial stress profile along bottom edge (wf) at 15.8 sec. 

 

Fig. 10.33 Axial stress profile along bottom edge (wf) at 19 sec. 
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Fig. 10.34 Stress histories for a center bottom surface wf point. 
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Fig. 10.35 Stress histories for a bottom surface wf Point, 0.31 m from a center, at the funnel 

outer bend.  
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Fig. 10.36 Stress histories for a bottom surface wf point, 0.58 m from a center, at the straight 

part. 
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Table 10.I  The thin slab with funnel simulation conditions 

________________________________________________________________________ 

Strand Thickness [mm]      90 

Slab width [mm]       1500 

Working mould length [mm]      1200 

Funnel depth at the meniscus [mm]     40 

Funnel depth at bottom of mold [mm]    6 

Casting speed [m/min]      3.6 

Softened Contact Coefficients: c0
 and p0     5*10-4, 105

Friction Coefficient (Mold/Shell)     0.1 

Steel grade [%C]       0.27 

Liquids temperature [C]      1500.7 

Solidus temperature [C]      1411.79 

Initial strand temperature [C]      1540. 

Time to apply ferrostatic pressure [sec]    0. 

Number of elements       103182 

Number of nodes       219332 

Total number of dofs       430444 
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Chapter 11. Summary and Future Work 

 

11.1 Summary of this work 

 

A computationally efficient local integration algorithm from an in-house code CON2D has been 

implemented into a general purpose commercial finite element code Abaqus via user-defined 

subroutine UMAT to solve for thermal stresses, strains and displacement in realistic 

solidification process which involve highly nonlinear constitutive relations and temperature 

dependant material properties.  

A class of highly nonlinear thermal-mechanical solidification problems is solved using several 

different local-global methods. The elastic-visco-plastic constitutive laws are integrated locally 

by using four different integration methods. In addition to the local integration methods built into 

Abaqus, two new integration methods are coded into Abaqus material user subroutine UMAT. 

Two special treatments for treating the liquid/mushy zone with a fixed grid approach are 

presented and compared. At the global level, the full Newton-Raphson method built into Abaqus 

finite element solution procedure is compared with the alternating implicit-explicit method of 

CON2D. Results of both numerical codes are validated against a semi-analytical solution. While 

the results are matching extremely well, the performance of Abaqus with the UMAT-coded 

methods is increased by ~ 20 times relative to the built-in methods and become comparable to 

CON2D. 

This work has opened the door for large-scale realistic finite-element simulations of continuous 

casting and other solidification processes with highly nonlinear viscoplastic phenomena. More 
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features are implemented into Abaqus solidification models. These include: an increment-wise 

thermo-mechanical coupling, thermo-mechanical contact between mold wall and shell including 

gap dependant conductivity coded into Abaqus GAPCON subroutine, ferrostatic pressure on the 

solidifying shell coded into Abaqus subroutine DLOAD, taper and mold distortion coded into 

Abaqus subroutine DISP, and phase dependant constitutive laws (delta-ferrite and austenite).  

With the parallel solvers built into Abaqus on the latest computing platforms, this methodology 

has enabled realistic 2D generalized plane-strain coupled thermo-mechanical simulations of 

billet casting and later beam blank casting with complex geometry. Finally, a highly 

computationally intensive 3D solidification simulation of a thin-slab casting with funnel is 

performed. It has provided new valuable insights into a complex mechanical state of transverse 

and axial stress of the solidifying shell retracted by the funnel geometry.  

 

11.2 Future Work Recommendations 

 

 More realistic spatially and time dependant thermal flux boundary conditions from a real 

plant measurements along with proper steel grade and taper data  should be used for the 

future 2D beam blank and 3D thin-slab simulations. 

 

 Temperature and flux results from the beam-blank and thin-slab simulations should be 

verified against experimental plant measurements and used to further calibrate the 

models.  
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 Apply the model from this work to solve variety of practical continuous casting problems 

and improve the process efficiency and quality of the products such as:  

     -taper optimization 

   -prediction of breakouts due to shell thinning in hot spots 

   -understanding the causes of surface depressions and longitudinal cracks 

   -development of transverse. cracks due to withdrawal forces overcoming friction 

   -hot tearing crack prediction in mushy/liquid zone  

    -thermo-mechanical behavior of solidifying shell bellow mold and more. 

 

 Gain more insights into some other solidification processes like aluminum continuous 

casting or welding.  

 

 Follow the investigation of the memory problems that occurred late in the 3D simulation. 

Perhaps re-run the 3D simulation with the newest Abaqus distributed memory solver 

v6.6, which apparently scales better and uses memory more wisely, and which is 

scheduled for the release in late 2006.  

 

 Use the stress and inelastic strain results from this work for failure predictions and 

improve UMAT to automatically calculate damage strains that can be contoured with 

Abaqus/CAE.  

 

 Explore the ways to use Abaqus/Explicit based on an explicit finite element formulation. 

Though Abaqus/Explicit is primarily written for dynamics problems, it has been very 
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effectively used for highly nonlinear quasi-static problems with contact. The user 

subroutine UMAT developed in this work for implicit formulation should be re-written 

into VUMAT used to describe material constitutive behavior with explicit formulation. 

Abaqus/Explicit solver has showed almost an order of magnitude better parallel scaling 

than implicit parallel solvers. If this transition to Abaqus/Explicit is successful, coupled 

thermo-mechanical simulations of even larger 3D domains will be realistic. 

 

 Abaqus Inc. is providing fluid-solid interface (FSI) capabilities. Since a large amount of 

CFD continuous casting research is preformed with Fluent, this will allow achieving an 

ultimate goal, a fully coupled 3D fluid-thermo-mechanical analysis of continuous casting 

and other related solidification processes. 

 161



Appendix. GAPCON Subroutine 

 

      subroutine gapcon(ak,d,flowm,temp,predef,time,ciname, 
     1  slname,msname,coords,noel,node,npred,kstep,kinc) 
c 
      include 'aba_param.inc' 
c 
      character*80 ciname,slname,msname 
      dimension flowm(2),temp(2),predef(2,*), 
     1          ak(5),d(2),coords(3),time(2) 
      
c-------------------------------------------------------- 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
 
      tshell= temp(1) + 273.15 
      tmold = temp(2) + 273.15 
cc 
      vel = 0.6 
      z = (vel / 60.d0) * TIME(1) 
ccc  
      rkair = 0.06 
      rkpow = 1.00 
      h0mold = 3000. 
      tcrys = 1030.0 + 273.0 
      tsoft = 1150.0 + 273.0 
      hcrys = 1000.0 
      hsoft = 2000.0 
      hsol =  6000.0 
      hliq =  3.e6 
c 
c     The values of powmax and powmin are obtained from CON1D 
c 
 if(z .gt. 0.1)   powmax = (0.408 + 0.613*z - 0.229*z**2)*1.d-3 
 if(z .le. 0.1)   powmax = (0.3422 + 0.712*z)*1.d-3 
 if(z .le. 0.018) powmax= (0.412-8.55*z+275*z**2)*1.d-3 
 powmin = powmax - 0.05d-3 
      e1 = 0.8 
      e2 = 0.5 
c 
c Calculate new emmissivity based on refractive index 
c 
 rindex = 1.5 
 ad = 200 
 emiss = rindex**2/(0.75*ad*powmax + 1./e1 + 1./e2 - 1.) 
c 
c     Calculates heat radiation of GAP 
c 
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      hradgap = 5.669d-8*emiss*(tshell+tmold)* 
     +          (tshell*tshell+tmold*tmold) 
c 
c     Linear interpolation with temperature for contact convection  
c       coefficient with temperature 
c 
      h0shell = hsol + (hliq-hsol) * (tshell-tsol-273.)/(tliq-tsol) 
      if(tshell.lt.(tsol+273.))  
     +  h0shell = hsoft + (hsol-hsoft)*(tshell-tsoft)/(tsol+273.-tsoft) 
      if(tshell.lt.tsoft)  
     +  h0shell = hcrys + (hsoft-hcrys)*(tshell-tcrys)/(tsoft-tcrys) 
      if(tshell.lt.tcrys) h0shell = hcrys 
      h0shell = hliq 
c----------------------------------------------------------------------- 
cCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCcCC 
 
c 
        if(d(1).lt.powmin) d(1) = powmin 
        if(d(1).lt.powmax) then 
          powgap = d(1) 
          airgap = 0.0 
        else 
          airgap = d(1) - powmax 
          powgap = powmax 
        endif 
c 
c       Determination of the contact resistance between the shell and  
c       powder. 
c 
        reshell = 1./h0shell 
c 
c       Calculation of gap heat transfer 
c 
        rgap = 1./hradgap*(1./h0mold+powgap/rkpow+airgap/rkair+reshell) 
     +         /(1./hradgap+1./h0mold+powgap/rkpow+airgap/rkair+reshell) 
         
 
        AK(1) = 1.d0 / rgap 
CCCCCCCCCCCC D E B U G CCCCCCCCCCCCCCCCCCCCC 
        return 
        end 
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